Application of matched subspace detectors to target detection and identification in ground penetrating radar data

In this work we present an application of matched subspace detectors to the problem of target detection and identification using ground penetrating radar data. In particular we apply sets of matched subspace detector filter banks to data containing both anti-personnel and anti-tank targets as well as metallic and non-metallic clutter objects. Current results indicate the potential for robust target detection and identification but further improvements via subspace modeling and signal extraction/enhancement may also improve performance.

[1]  Thomas H. Bell,et al.  Electromagnetic induction spectroscopy for clearing landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[3]  Lloyd S. Riggs,et al.  Identification of metallic mine-like objects using low frequency magnetic fields , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Leslie M. Collins,et al.  Performance of matched subspace detectors and support vector machines for induction-based land mine detection , 2002, SPIE Defense + Commercial Sensing.

[5]  Leslie M. Collins,et al.  A comparison of algorithms for subsurface target detection and identification using time-domain electromagnetic induction data , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Louis L. Scharf,et al.  Signal processing applications of oblique projection operators , 1994, IEEE Trans. Signal Process..

[7]  Yong Wang,et al.  Complex natural resonances of conducting planar objects buried in a dielectric half-space , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  L. Collins,et al.  Model-based statistical signal processing using electromagnetic induction data for landmine detection and classification , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[9]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[10]  Kenneth J. Hintz,et al.  SNR improvements in NIITEK ground-penetrating radar , 2004, SPIE Defense + Commercial Sensing.

[11]  Ning Xiang,et al.  An investigation of acoustic-to-seismic coupling to detect buried antitank landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[13]  L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[14]  Waymond R. Scott,et al.  Experimental model for a seismic landmine detection system , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Chandra S. Throckmorton,et al.  Feature-based processing of prescreener-generated alarms for performance improvements in target identification using the NIITEK ground-penetrating radar system , 2004, SPIE Defense + Commercial Sensing.

[16]  Leslie M. Collins,et al.  Improving detection of low-metallic content landmines using EMI data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[17]  Leslie M. Collins,et al.  Performance bounds for target identification using decay rates estimates from EMI measurements , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[18]  Joseph N. Wilson,et al.  Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Peter A. Torrione,et al.  Application of the LMC algorithm to anomaly detection using the Wichmann/NIITEK ground-penetrating radar , 2003, SPIE Defense + Commercial Sensing.

[20]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[21]  Joseph N. Wilson,et al.  Feature analysis for the NIITEK ground-penetrating radar using order-weighted averaging operators for landmine detection , 2004, SPIE Defense + Commercial Sensing.

[22]  Steven S. Bishop,et al.  Processing of GPR data from NIITEK landmine detection system , 2003, SPIE Defense + Commercial Sensing.

[23]  Peter A. Torrione,et al.  Three-dimensional features to improve detection using ground-penetrating radar , 2004, SPIE Defense + Commercial Sensing.

[24]  P.A. Torrione,et al.  Performance of an adaptive feature-based processor for a wideband ground penetrating radar system , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Bruce Barrow,et al.  Model-based characterization of electromagnetic induction signatures obtained with the MTADS electromagnetic array , 2001, IEEE Trans. Geosci. Remote. Sens..