Neural Correlates of Animacy Attribution Include Neocerebellum in Healthy Adults.

Recent work suggests that biological motion perception is supported by interactions between posterior superior temporal sulcus (pSTS) and regions of the posterior lobe of the cerebellum. However, insufficient attention has been given to cerebellar contributions to most other social cognitive functions, including ones that rely upon the use of biological motion cues for making mental inferences. Here, using adapted Heider and Simmel stimuli in a passive-viewing paradigm, we present functional magnetic resonance imaging evidence detailing cerebellar contributions to animacy attribution processes in healthy adults. We found robust cerebellar activity associated with viewing animate versus random movement in hemispheric lobule VII bilaterally as well as in vermal and paravermal lobule IX. Stronger activity in left Crus I and lobule VI was associated with a greater tendency to describe the stimuli in social-affective versus motion-related terms. Psychophysiological interaction analysis indicated preferential effective connectivity between right pSTS and left Crus II during the viewing of animate than random stimuli, controlling for individual variance in social attributions. These findings indicate that lobules VI, VII, and IX participate in social functions even when no active response is required. This cerebellar activity may also partially explain individual differences in animacy attribution.

[1]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[2]  A. Schoppmann,et al.  A direct afferent visual pathway from the nucleus of the optic tract to the inferior olive in the cat , 1976, Brain Research.

[3]  Michael Erb,et al.  Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. , 2014, Cerebral cortex.

[4]  O. Oscasson Functional organization of olivary projection to the cerebellar anterior lobe , 1980 .

[5]  T. Ebner,et al.  Climbing fiber afferent modulation during treadmill locomotion in the cat. , 1987, Journal of neurophysiology.

[6]  J. Schmahmann An emerging concept. The cerebellar contribution to higher function. , 1991, Archives of neurology.

[7]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[8]  V. Braitenberg,et al.  Morphological observations on the cerebellar cortex , 1958, The Journal of comparative neurology.

[9]  Duo Xu,et al.  Role of the Olivo-Cerebellar System in Timing , 2006, The Journal of Neuroscience.

[10]  F. Rossi,et al.  Handbook of the Cerebellum and Cerebellar Disorders , 2013, Springer Netherlands.

[11]  Aaron C. Koralek,et al.  Two Takes on the Social Brain: A Comparison of Theory of Mind Tasks , 2007, Journal of Cognitive Neuroscience.

[12]  Jeremy D. Schmahmann,et al.  Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies , 2009, NeuroImage.

[13]  Ingrid R. Olson,et al.  Social cognition and the anterior temporal lobes , 2010, NeuroImage.

[14]  Werner Lutzenberger,et al.  Social interaction revealed by motion: dynamics of neuromagnetic gamma activity. , 2010, Cerebral cortex.

[15]  P. Strick,et al.  Cerebellar Projections to the Prefrontal Cortex of the Primate , 2001, The Journal of Neuroscience.

[16]  W. Roberts,et al.  Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw , 1976, Brain Research.

[17]  M. Frens,et al.  Motor coding in floccular climbing fibers. , 2006, Journal of neurophysiology.

[18]  James R. Bloedel,et al.  Coordinate transformation and limb movements: There may be more complexity than meets the eye , 1992, Behavioral and Brain Sciences.

[19]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[20]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[21]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[22]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[23]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .

[24]  J. Bloedel Functional heterogeneity with structural homogeneity: How does the cerebellum operate? , 1992 .

[25]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[26]  Timothy E. J. Behrens,et al.  Tools of the trade: psychophysiological interactions and functional connectivity. , 2012, Social cognitive and affective neuroscience.

[27]  Mark W. Woolrich,et al.  Robust group analysis using outlier inference , 2008, NeuroImage.

[28]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[29]  James P. Morris,et al.  Subcortical contributions to effective connectivity in brain networks supporting imitation , 2011, Neuropsychologia.

[30]  C. Frith,et al.  Movement and Mind: A Functional Imaging Study of Perception and Interpretation of Complex Intentional Movement Patterns , 2000, NeuroImage.

[31]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[32]  A. L. Leiner,et al.  Cognitive and language functions of the human cerebellum , 1993, Trends in Neurosciences.

[33]  J. Houk,et al.  Somatosensory properties of the inferior olive of the cat , 1983, The Journal of comparative neurology.

[34]  J. Schmahmann,et al.  Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications , 2021, Handbook of the Cerebellum and Cerebellar Disorders.

[35]  S. Keele,et al.  Dissociation of the lateral and medial cerebellum in movement timing and movement execution , 2004, Experimental Brain Research.

[36]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[37]  Catherine J. Stoodley,et al.  Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing , 2010, Cortex.

[38]  N Ramnani,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[39]  D. Pandya,et al.  Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey , 1991, The Journal of comparative neurology.

[40]  J. Lewin Functional MRI: An introduction to methods , 2003 .

[41]  N. H. Sabah,et al.  Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. II. In Purkyně cells by mossy fiber input , 1972, Experimental Brain Research.

[42]  Kiyotaka Nemoto,et al.  The neural network for the mirror system and mentalizing in normally developed children: an fMRI study , 2004, Neuroreport.

[43]  Randy L. Buckner,et al.  Mixed blocked/event-related designs separate transient and sustained activity in fMRI , 2003, NeuroImage.

[44]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[45]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[46]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[47]  Kris M. Horn,et al.  Activation of climbing fibers , 2008, The Cerebellum.

[48]  P. Skudlarski,et al.  The role of the fusiform face area in social cognition: implications for the pathobiology of autism. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  T. Ebner,et al.  Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. , 1984, The Journal of physiology.

[50]  X. Hu,et al.  4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. , 1998, Journal of neurophysiology.

[51]  J. Schmahmann,et al.  The cerebellar cognitive affective syndrome. , 1998, Brain : a journal of neurology.

[52]  J. Houk,et al.  Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. , 1985, Journal of neurophysiology.

[53]  Alex Martin,et al.  NEURAL FOUNDATIONS FOR UNDERSTANDING SOCIAL AND MECHANICAL CONCEPTS , 2003, Cognitive neuropsychology.

[54]  D. Armstrong,et al.  Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. , 1987, The Journal of physiology.

[55]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[56]  Jörn Diedrichsen,et al.  Dissociating Timing and Coordination as Functions of the Cerebellum , 2007, The Journal of Neuroscience.

[57]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[58]  Rebecca Saxe,et al.  Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses , 2014, NeuroImage.

[59]  David Willshaw,et al.  The cerebellum as a neuronal machine , 1999 .

[60]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[61]  D. Armstrong Functional significance of connections of the inferior olive. , 1974, Physiological reviews.

[62]  Alan C. Evans,et al.  Three-Dimensional MRI Atlas of the Human Cerebellum in Proportional Stereotaxic Space , 1999, NeuroImage.

[63]  A. Klin Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: The Social Attribution Task. , 2000, Journal of child psychology and psychiatry, and allied disciplines.

[64]  J. Connelly,et al.  DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli , 2012, Front. Hum. Neurosci..

[65]  R. E. Passingham,et al.  Changes in the Human Brain during Rhythm Learning , 2001, Journal of Cognitive Neuroscience.

[66]  Masao Ito Movement and thought: identical control mechanisms by the cerebellum , 1993, Trends in Neurosciences.

[67]  D. Jean,et al.  Random-effect analysis. , 2014 .

[68]  Yau-Yau Wai,et al.  The effects of single-trial averaging on the temporal resolution of functional MRI. , 2006, Magnetic resonance imaging.

[69]  A. Schienle,et al.  Cerebellar activity and connectivity during the experience of disgust and happiness , 2013, Neuroscience.

[70]  M. Pavlova Biological motion processing as a hallmark of social cognition. , 2012, Cerebral cortex.

[71]  P. Matthews,et al.  Distinct patterns of brain activity in young carriers of the APOE e4 allele , 2009, NeuroImage.

[72]  Andrew B. Templeman,et al.  Non-Linear Optimisation in Civil Engineering , 1982 .

[73]  A. Friederici,et al.  Time Perception and Motor Timing: A Common Cortical and Subcortical Basis Revealed by fMRI , 2000, NeuroImage.

[74]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[75]  K. Sasaki,et al.  Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex , 1975, Experimental Brain Research.

[76]  N H Barmack,et al.  Effects of microlesions of dorsal cap of inferior olive of rabbits on optokinetic and vestibuloocular reflexes. , 1980, Journal of neurophysiology.

[77]  Jason B. Mattingley,et al.  Functional topography of primary emotion processing in the human cerebellum , 2012, NeuroImage.

[78]  N. Ramnani The primate cortico-cerebellar system: anatomy and function , 2006, Nature Reviews Neuroscience.

[79]  Katherine E. Prater,et al.  Distinct Cerebellar Contributions to Intrinsic Connectivity Networks , 2009, NeuroImage.

[80]  Cindy K. Chung,et al.  The development and psychometric properties of LIWC2007 , 2007 .

[81]  J. Simpson The accessory optic system. , 1984, Annual review of neuroscience.

[82]  Mariko Osaka,et al.  Effect of Intentional Bias on Agency Attribution of Animated Motion: An Event-Related fMRI Study , 2012, PloS one.

[83]  V. Braitenberg Is the cerebellar cortex a biological clock in the millisecond range? , 1967, Progress in brain research.

[84]  J Ashe,et al.  Specificity of inferior olive response to stimulus timing. , 2008, Journal of neurophysiology.

[85]  Ralph Adolphs,et al.  Impaired spontaneous anthropomorphizing despite intact perception and social knowledge. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  G. Fink,et al.  Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain , 2008, Consciousness and Cognition.

[87]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[88]  Mingxiong Huang,et al.  Neural representation of interval encoding and decision making. , 2004, Brain research. Cognitive brain research.

[89]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[90]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[91]  J. Bloedel,et al.  Current concepts of climbing fiber function , 1998, The Anatomical record.

[92]  R. Adolphs Conceptual Challenges and Directions for Social Neuroscience , 2010, Neuron.

[93]  Alireza Gharabaghi,et al.  Cerebellar engagement in an action observation network. , 2010, Cerebral cortex.

[94]  P. Strick,et al.  Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate , 2003, The Journal of Neuroscience.

[95]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[96]  L. Garriga-Grimau,et al.  [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.

[97]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[98]  Philip J. Barnard,et al.  Emotional Complexity and the Neural Representation of Emotion in Motion , 2010, Social cognitive and affective neuroscience.

[99]  R. Adolphs,et al.  The social brain: neural basis of social knowledge. , 2009, Annual review of psychology.

[100]  R. Miall,et al.  Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging , 2003, Current Opinion in Neurobiology.

[101]  David Badre,et al.  Temporal Sensitivity of Event-Related fMRI , 2002, NeuroImage.

[102]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[103]  J. Schmahmann The role of the cerebellum in affect and psychosis , 2000, Journal of Neurolinguistics.

[104]  Kurt Wiesenfeld,et al.  Neural correlates of the complexity of rhythmic finger tapping , 2003, NeuroImage.

[105]  Chiara Gagliardi,et al.  Disorders of cognitive and affective development in cerebellar malformations. , 2007, Brain : a journal of neurology.

[106]  Richard P. Bagozzi,et al.  fMRI Activities in the Emotional Cerebellum: A Preference for Negative Stimuli and Goal-Directed Behavior , 2011, The Cerebellum.

[107]  A. Kristofferson,et al.  Response delays and the timing of discrete motor responses , 1973 .

[108]  Elvira Brattico,et al.  Cognitive and Motor Loops of the Human Cerebro-cerebellar System , 2010, Journal of Cognitive Neuroscience.

[109]  Arseny A. Sokolov,et al.  Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus , 2012, NeuroImage.