The brain's code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease

A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs.

[1]  D. Mathalon,et al.  Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. , 2008, Schizophrenia bulletin.

[2]  Ian Law,et al.  Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition , 2012, NeuroImage.

[3]  M. Cunningham,et al.  Mitochondria and cortical gamma oscillations: food for thought? , 2011, Brain : a journal of neurology.

[4]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[5]  E Marder,et al.  Coordination of Fast and Slow Rhythmic Neuronal Circuits , 1999, The Journal of Neuroscience.

[6]  Sarah J Wilson,et al.  Auditory processing and hallucinations in schizophrenia , 2013, Schizophrenia Research.

[7]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[8]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[9]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[10]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[11]  Karl J. Friston,et al.  Attentional Modulation of Alpha/Beta and Gamma Oscillations Reflect Functionally Distinct Processes , 2014, The Journal of Neuroscience.

[12]  K. Nakazawa,et al.  Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia , 2013, Front. Behav. Neurosci..

[13]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[14]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[15]  Danko D. Georgiev,et al.  Lower gene expression for KCNS3 potassium channel subunit in parvalbumin-containing neurons in the prefrontal cortex in schizophrenia. , 2014, The American journal of psychiatry.

[16]  Alex R. Wade,et al.  Early Suppressive Mechanisms and the Negative Blood Oxygenation Level-Dependent Response in Human Visual Cortex , 2010, The Journal of Neuroscience.

[17]  M. Webster,et al.  Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. , 2010, The American journal of psychiatry.

[18]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[19]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[20]  L. de Arcangelis,et al.  Learning as a phenomenon occurring in a critical state , 2010, Proceedings of the National Academy of Sciences.

[21]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[22]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[23]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Riitta Hari,et al.  Transient Suppression of Ipsilateral Primary Somatosensory Cortex during Tactile Finger Stimulation , 2006, The Journal of Neuroscience.

[25]  U. Stephani,et al.  Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes , 2013, Nature Genetics.

[26]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[27]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[28]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[29]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[30]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[32]  Sir Charles Sherrington THE BRAIN AND ITS MECHANISM , 1934 .

[33]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[34]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[35]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[36]  Anne de Saint Martin,et al.  GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction , 2013, Nature Genetics.

[37]  Viktor Jirsa,et al.  Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior. , 2014, Psychological review.

[38]  A Pouget,et al.  MSTd neuronal basis functions for the population encoding of heading direction. , 2003, Journal of neurophysiology.

[39]  Esther Florin,et al.  The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations , 2015, NeuroImage.

[40]  M. Kringelbach,et al.  Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders , 2014, Neuron.

[41]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[42]  Nancy Kopell,et al.  Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons , 2005, Neural Computation.

[43]  Richard Coppola,et al.  Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition , 2009, Human brain mapping.

[44]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[45]  Karl J. Friston,et al.  Uncertainty in perception and the Hierarchical Gaussian Filter , 2014, Front. Hum. Neurosci..

[46]  D. Chialvo,et al.  Self-similar correlation function in brain resting-state functional magnetic resonance imaging , 2010, Journal of The Royal Society Interface.

[47]  M. Hasselmo,et al.  Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. , 1999, Archives of general psychiatry.

[48]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[49]  S. David,et al.  Rapid Synaptic Depression Explains Nonlinear Modulation of Spectro-Temporal Tuning in Primary Auditory Cortex by Natural Stimuli , 2009, The Journal of Neuroscience.

[50]  W. Singer,et al.  Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle , 2012, Proceedings of the National Academy of Sciences.

[51]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[52]  Karl Deisseroth,et al.  Optogenetic Activation of an Inhibitory Network Enhances Feedforward Functional Connectivity in Auditory Cortex , 2013, Neuron.

[53]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Viktor K. Jirsa,et al.  Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire , 2008, PLoS Comput. Biol..

[55]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[56]  Hamid Reza Mohseni,et al.  Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations , 2014, NeuroImage.

[57]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[58]  J. Gorman,et al.  Source monitoring impairments in schizophrenia: characterisation and associations with positive and negative symptomatology , 2002, Psychiatry Research.

[59]  J. Fuster Cortex and mind : unifying cognition , 2003 .

[60]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[61]  Murray Shanahan,et al.  Metastability and Inter-Band Frequency Modulation in Networks of Oscillating Spiking Neuron Populations , 2013, PloS one.

[62]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[63]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[64]  Jun Soo Kwon,et al.  Increased default mode network connectivity associated with meditation , 2011, Neuroscience Letters.

[65]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[66]  S. Schiffmann,et al.  Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities , 2015, Translational Psychiatry.

[67]  C. Tamminga,et al.  Kv3.1-containing K+ channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs , 2014, Molecular Psychiatry.

[68]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[69]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[70]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[71]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[72]  A. Sampson,et al.  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. , 2011, The American journal of psychiatry.

[73]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[74]  O. Sporns,et al.  Key role of coupling, delay, and noise in resting brain fluctuations , 2009, Proceedings of the National Academy of Sciences.

[75]  Biyu J. He Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task , 2011, The Journal of Neuroscience.

[76]  Adrian edgar douglas The basis of sensation: the action of the sense organs. , 1964 .

[77]  Carson C. Chow,et al.  Synchronization and Oscillatory Dynamics in Heterogeneous, Mutually Inhibited Neurons , 1998, Journal of Computational Neuroscience.

[78]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[79]  D. Chialvo,et al.  Ising-like dynamics in large-scale functional brain networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[81]  P. Alstrøm,et al.  COMPLEXITY AND CRITICALITY , 2004 .

[82]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[83]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[84]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[85]  Takahiro A. Kato,et al.  Neuroinflammation in schizophrenia especially focused on the role of microglia , 2013, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[86]  N. Volkow,et al.  Magnetic resonance imaging (MRI) detection of the murine brain response to light: temporal differentiation and negative functional MRI changes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  N. Dehorter,et al.  Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes , 2013, Neuron.

[88]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[89]  F. D. Silva,et al.  Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity , 1989, Brain Research.

[90]  Gustavo Deco,et al.  Resting brains never rest: computational insights into potential cognitive architectures , 2013, Trends in Neurosciences.

[91]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[92]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[93]  David J. Sharp,et al.  Spatial Dependencies between Large-Scale Brain Networks , 2014, PloS one.

[94]  Barry B. Lee,et al.  Suppressive Surrounds and Contrast Gain in Magnocellular-Pathway Retinal Ganglion Cells of Macaque , 2006, The Journal of Neuroscience.

[95]  Qian-Quan Sun,et al.  Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein , 2007, Neuroscience Letters.

[96]  A. Sampson,et al.  GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. , 2001, The American journal of psychiatry.

[97]  Dae-Shik Kim,et al.  Origin of Negative Blood Oxygenation Level—Dependent fMRI Signals , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[98]  Kevin Whittingstall,et al.  Correspondence of visual evoked potentials with FMRI signals in human visual cortex. , 2008, Brain topography.

[99]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[100]  Karl J. Friston,et al.  The Computational Anatomy of Psychosis , 2013, Front. Psychiatry.

[101]  W. Singer,et al.  Cortical Oscillatory Activity Is Critical for Working Memory as Revealed by Deficits in Early-Onset Schizophrenia , 2009, The Journal of Neuroscience.

[102]  Cathy J. Price,et al.  Functional Heterogeneity within the Default Network during Semantic Processing and Speech Production , 2012, Front. Psychology.

[103]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[104]  Federico E Turkheimer,et al.  Cerebral Energy Metabolism and the Brain’s Functional Network Architecture: An Integrative Review , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[105]  Enzo Tagliazucchi,et al.  Dynamic BOLD functional connectivity in humans and its electrophysiological correlates , 2012, Front. Hum. Neurosci..

[106]  Satoshi Kida,et al.  Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans , 2007, Proceedings of the National Academy of Sciences.

[107]  Daniel E Weeks,et al.  Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. , 2005, American journal of human genetics.

[108]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[109]  V. Calhoun,et al.  Exploring the Psychosis Functional Connectome: Aberrant Intrinsic Networks in Schizophrenia and Bipolar Disorder , 2012, Front. Psychiatry.

[110]  Gustavo Deco,et al.  Functional connectivity dynamics: Modeling the switching behavior of the resting state , 2015, NeuroImage.

[111]  K. Meador,et al.  Functional MRI cerebral activation and deactivation during finger movement , 2000, Neurology.

[112]  Andreas Draguhn,et al.  Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[113]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[114]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[115]  K. D. Singh,et al.  Negative BOLD in the visual cortex: Evidence against blood stealing , 2004, Human brain mapping.

[116]  Robert W. McCarley,et al.  Sensory-Evoked Gamma Oscillations in Chronic Schizophrenia , 2008, Biological Psychiatry.

[117]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[118]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[119]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[120]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[121]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[122]  Marc Benayoun,et al.  EEG, Temporal Correlations, and Avalanches , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[123]  Arvind Kumar,et al.  Challenges of understanding brain function by selective modulation of neuronal subpopulations , 2013, Trends in Neurosciences.

[124]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[125]  Rainer Hinz,et al.  Multi-resolution Bayesian regression in PET dynamic studies using wavelets , 2006, NeuroImage.

[126]  I. Weiner,et al.  Effects of risperidone treatment in adolescence on hippocampal neurogenesis, parvalbumin expression, and vascularization following prenatal immune activation in rats , 2012, Brain, Behavior, and Immunity.

[127]  D. Bilkey,et al.  Abnormal Long-Range Neural Synchrony in a Maternal Immune Activation Animal Model of Schizophrenia , 2010, The Journal of Neuroscience.

[128]  L. Abbott,et al.  Presynaptic inhibition of spinal sensory feedback ensures smooth movement , 2014, Nature.

[129]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[130]  P. Somogyi,et al.  Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: a quantitative immunoelectron microscopic analysis. , 1993, Journal fur Hirnforschung.

[131]  L. Abbott,et al.  Generating sparse and selective third-order responses in the olfactory system of the fly , 2010, Proceedings of the National Academy of Sciences.

[132]  Urs Meyer,et al.  Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice , 2008, Brain, Behavior, and Immunity.

[133]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[134]  Hannah Monyer,et al.  GABAergic Interneurons Shape the Functional Maturation of the Cortex , 2013, Neuron.

[135]  Michael F. Green,et al.  Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. , 2006, The Journal of clinical psychiatry.

[136]  J N Giedd,et al.  Neurodevelopmental model of schizophrenia: update 2012 , 2012, Molecular Psychiatry.

[137]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[138]  D. Johnston,et al.  Negative Blood Oxygen Level Dependence in the Rat:A Model for Investigating the Role of Suppression in Neurovascular Coupling , 2010, The Journal of Neuroscience.

[139]  Peter J Hellyer,et al.  The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention , 2014, The Journal of Neuroscience.

[140]  Karl J. Friston,et al.  Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring , 2009, Schizophrenia bulletin.

[141]  Emilio Salinas,et al.  Rank-Order-Selective Neurons Form a Temporal Basis Set for the Generation of Motor Sequences , 2009, The Journal of Neuroscience.

[142]  T. Kosaka,et al.  Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector , 1994, Experimental Brain Research.

[143]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[144]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[145]  J DeFelipe,et al.  Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity. , 1993, Cerebral cortex.

[146]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[147]  S. Iritani Neuropathology of schizophrenia: A mini review , 2007, Neuropathology : official journal of the Japanese Society of Neuropathology.

[148]  Dorothee P. Auer,et al.  Is the brain cortex a fractal? , 2003, NeuroImage.

[149]  D. Javitt,et al.  Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis , 2005, Schizophrenia Research.

[150]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[151]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[152]  J. Shendure,et al.  GRIN2A mutations cause epilepsy-aphasia spectrum disorders , 2013, Nature Genetics.

[153]  W. Kristan,et al.  Population coding and behavioral choice , 1997, Current Opinion in Neurobiology.

[154]  E. Ginns,et al.  Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia , 2009, Biological Psychiatry.

[155]  Alan Urban,et al.  Deciphering the Neuronal Circuitry Controlling Local Blood Flow in the Cerebral Cortex with Optogenetics in PV::Cre Transgenic Mice , 2012, Front. Pharmacol..

[156]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[157]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[158]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[159]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[160]  Sylvain Williams,et al.  Early Alterations in Hippocampal Circuitry and Theta Rhythm Generation in a Mouse Model of Prenatal Infection: Implications for Schizophrenia , 2012, PloS one.

[161]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[162]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[163]  G. DeAngelis,et al.  Multisensory Integration in Macaque Visual Cortex Depends on Cue Reliability , 2008, Neuron.

[164]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[165]  J. Pierri,et al.  Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. , 2001, The American journal of psychiatry.

[166]  R. Kahn,et al.  Default-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients , 2012, Schizophrenia Research.

[167]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[168]  D. Sharp,et al.  Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control , 2011, The Journal of Neuroscience.

[169]  Dae-Shik Kim,et al.  Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.

[170]  Wenbin Guo,et al.  Abnormal default-mode network homogeneity in first-episode, drug-naive schizophrenia at rest , 2014, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[171]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[172]  R. Canitano Epilepsy in autism spectrum disorders , 2007, European Child & Adolescent Psychiatry.

[173]  M. A. Muñoz,et al.  Griffiths phases and the stretching of criticality in brain networks , 2013, Nature Communications.

[174]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[176]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[177]  J. Feldon,et al.  Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: Implications for schizophrenia , 2006, Neuroscience.

[178]  Ole Paulsen,et al.  Hippocampal gamma‐frequency oscillations: from interneurones to pyramidal cells, and back , 2005, The Journal of physiology.

[179]  W. Iacono,et al.  The status of spectral EEG abnormality as a diagnostic test for schizophrenia , 2008, Schizophrenia Research.

[180]  T M Hyde,et al.  Seizures and schizophrenia. , 1997, Schizophrenia bulletin.

[181]  A. Tanskanen,et al.  Evidence for Shared Susceptibility to Epilepsy and Psychosis: A Population-Based Family Study , 2012, Biological Psychiatry.

[182]  D. Leopold,et al.  Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest , 2008, Human brain mapping.

[183]  A. Sawa,et al.  Schizophrenia and epilepsy: Is there a shared susceptibility? , 2009, Neuroscience Research.

[184]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[185]  E. Blalock,et al.  Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy , 2009, Epilepsia.

[186]  G. Bruce Pike,et al.  Hemodynamic and metabolic responses to neuronal inhibition , 2004, NeuroImage.

[187]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[188]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[189]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[190]  David A Lewis,et al.  Cortical basket cell dysfunction in schizophrenia , 2012, The Journal of physiology.

[191]  T. Poggio,et al.  A model of V4 shape selectivity and invariance. , 2007, Journal of neurophysiology.

[192]  Douglas L Rosene,et al.  Density of cerebellar basket and stellate cells in autism: Evidence for a late developmental loss of Purkinje cells , 2009, Journal of neuroscience research.

[193]  T. Sejnowski,et al.  Spatial Transformations in the Parietal Cortex Using Basis Functions , 1997, Journal of Cognitive Neuroscience.

[194]  Cameron S. Carter,et al.  Developing treatments for impaired cognition in schizophrenia , 2012, Trends in Cognitive Sciences.

[195]  M. Riva,et al.  Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome. , 2014, Schizophrenia bulletin.

[196]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[197]  E. Salinas Context-dependent selection of visuomotor maps , 2004, BMC Neuroscience.

[198]  Rita Zemankovics,et al.  Explorer Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA 3 to CA 1 , 2016 .

[199]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[200]  Hiromitsu Shimizu,et al.  A microsatellite repeat in the promoter of the N-methyl-D-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. , 2003, Pharmacogenetics.

[201]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[202]  Cleofé Peña-Gómez,et al.  Brain connectivity during resting state and subsequent working memory task predicts behavioural performance , 2012, Cortex.

[203]  James J Levitt,et al.  Olfactory Dysfunction in Schizophrenia: A Review of Neuroanatomy and Psychophysiological Measurements , 2010, Harvard review of psychiatry.