Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures

The local morphology of the interface electrolyte/anode of solid oxide fuel cells has a strong effect on the electrochemically active triple-phase boundary length. Therefore, the electrical performance is expected to be enhanced by nanostructuring this interface. This study focuses on the anode functional layer (AFL) of Ni/8YSZ (Ni/8.5 mol % yttria-doped zirconia) composite anodes. A nanometer scaled and nanoporous Ni/YSZ interlayer of about 200 nm thickness was formed after applying a short-time reverse current treatment (RCT) at 700°C. Impedance spectroscopy measurements proved a progressive decrease of the overall area specific resistance, when exposing anode supported cells to a series of RCTs. The performance change was attributed purely to the decrease of the polarization resistance in the anode functional layer, which was reduced by 40%. Scanning and transmission electron microscopy (TEM) confirmed the formation of a nanocrystalline, porous YSZ matrix containing finely distributed nanosized Ni grains. Energy-filtered TEM yielded the distributions of the cations and oxygen. Furthermore, high-resolution TEM and darkfield TEM imaging identified mainly cubic YSZ including traces of the metastable t"-phase within the nanostructured YSZ. A reaction scheme for the formation of the highly efficient Ni/YSZ structure at the interface electrolyte/anode is proposed.

[1]  H. Möbius Die Nernst-Masse, ihre Geschichte und heutige Bedeutung , 2004, Naturwissenschaften.

[2]  John M. Vohs,et al.  Nanostructured anodes for solid oxide fuel cells , 2009 .

[3]  W. Weppner Electronic transport properties and electrically induced p-n junction in ZrO2 + 10 m/o Y2O3 , 1977 .

[4]  Ellen Ivers-Tiffée,et al.  Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 , 2006 .

[5]  F. Tietz,et al.  Performance analysis of mixed ionicelectronic conducting cathodes in anode supported cells , 2011 .

[6]  E. Ivers-Tiffée,et al.  Microstructure of Nanocrystalline Yttria‐Doped Zirconia Thin Films Obtained by Sol–Gel Processing , 2008 .

[7]  Carsten Korte,et al.  Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front , 1999 .

[8]  E. Ivers-Tiffée,et al.  Impedance Study of Alternative ( La , Sr ) FeO3 − δ and ( La , Sr ) ( Co , Fe ) O3 − δ MIEC Cathode Compositions , 2010 .

[9]  F. Tietz,et al.  An efficient ceramic-based anode for solid oxide fuel cells , 2007 .

[10]  Søren Linderoth,et al.  Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2 , 2001 .

[11]  E. Ivers-Tiffée,et al.  Grain-Size Effects in YSZ Thin-Film Electrolytes , 2009 .

[12]  M. Zahid,et al.  Electronic Conduction of Yttria-Stabilized Zirconia Electrolyte in Solid Oxide Cells Operated in High Temperature Water Electrolysis , 2009 .

[13]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[14]  W. Lehnert,et al.  Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation , 1999 .

[15]  Rolf W. Steinbrech,et al.  Recent Results in Solid Oxide Fuel Cell Development at Forschungszentrum Juelich , 2009 .

[16]  E. Ivers-Tiffée,et al.  Microstructure of Nanoscaled La0.6Sr0.4CoO3‐δ Cathodes for Intermediate‐Temperature Solid Oxide Fuel Cells , 2011 .

[17]  Werner Lehnert,et al.  Degradation of Solid Oxide Fuel Cell Anodes Due to Sintering of Metal Particles Correlated Percolation Model , 1997 .

[18]  Ellen Ivers-Tiffée,et al.  Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni ∕ 8YSZ Cermet Electrodes , 2008 .

[19]  Jin-Young Kim,et al.  Performance Deterioration of Ni-YSZ Anode Induced by Electrochemically Generated Steam in Solid Oxide Fuel Cells , 2010 .

[20]  Frank Tietz,et al.  Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells , 2000 .

[21]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[22]  W. Weppner VOLTAGE RELAXATION MEASUREMENTS OF THE ELECTRON AND HOLE MOBILITIES IN YTTRIA-DOPED ZIRCONIA , 1977 .

[23]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[24]  S. Uhlenbruck,et al.  Thin film coating technologies of (Ce,Gd)O2-δ interlayers for application in ceramic high-temperature fuel cells , 2007 .

[25]  R. Vaßen,et al.  Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells , 2001 .

[26]  A. Palenzona,et al.  The Y-Zr (Yttrium-Zirconium) system , 1991 .

[27]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer , 2006 .

[28]  W. C. Heraeus,et al.  Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen , 1899 .

[29]  H. Abe,et al.  NiO/YSZ nanocomposite particles synthesized via co-precipitation method for electrochemically active Ni/YSZ anode , 2009 .

[30]  Michael D. Gross,et al.  A Strategy for Achieving High-performance with SOFC Ceramic Anodes , 2007 .

[31]  R. Schneider,et al.  Decomposition of 8.5 mol.% Y2O3-doped zirconia and its contribution to the degradation of ionic conductivity , 2009 .

[32]  Ellen Ivers-Tiffée,et al.  Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .

[33]  Philip Nash,et al.  Phase diagrams of binary nickel alloys , 1991 .

[34]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[35]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[36]  F. Tietz,et al.  Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells , 2010 .

[37]  J. O’Brien,et al.  Conductivity degradation of NiO-containing 8YSZ and 10YSZ electrolyte during reduction , 2009 .

[38]  W. Grogger,et al.  Quantitative Energy-Filtering Transmission Electron Microscopy (EFTEM) , 2000, Microchimica Acta.

[39]  M. Itagaki,et al.  Complex impedance spectra of porous electrode with fractal structure , 2010 .

[40]  G. Schiller,et al.  Nanostructured functional layers for solid oxide fuel cells , 2009 .

[41]  T. Wagner,et al.  Electrochemically-induced reactions at Ni/ZrO2 interfaces , 1992 .