Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures
暂无分享,去创建一个
Ellen Ivers-Tiffée | Dino Klotz | André Leonide | Benjamin Butz | Dagmar Gerthsen | E. Ivers-Tiffée | Dino Klotz | D. Gerthsen | B. Butz | A. Leonide | Jan Hayd | J. Hayd
[1] H. Möbius. Die Nernst-Masse, ihre Geschichte und heutige Bedeutung , 2004, Naturwissenschaften.
[2] John M. Vohs,et al. Nanostructured anodes for solid oxide fuel cells , 2009 .
[3] W. Weppner. Electronic transport properties and electrically induced p-n junction in ZrO2 + 10 m/o Y2O3 , 1977 .
[4] Ellen Ivers-Tiffée,et al. Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 , 2006 .
[5] F. Tietz,et al. Performance analysis of mixed ionicelectronic conducting cathodes in anode supported cells , 2011 .
[6] E. Ivers-Tiffée,et al. Microstructure of Nanocrystalline Yttria‐Doped Zirconia Thin Films Obtained by Sol–Gel Processing , 2008 .
[7] Carsten Korte,et al. Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front , 1999 .
[8] E. Ivers-Tiffée,et al. Impedance Study of Alternative ( La , Sr ) FeO3 − δ and ( La , Sr ) ( Co , Fe ) O3 − δ MIEC Cathode Compositions , 2010 .
[9] F. Tietz,et al. An efficient ceramic-based anode for solid oxide fuel cells , 2007 .
[10] Søren Linderoth,et al. Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2 , 2001 .
[11] E. Ivers-Tiffée,et al. Grain-Size Effects in YSZ Thin-Film Electrolytes , 2009 .
[12] M. Zahid,et al. Electronic Conduction of Yttria-Stabilized Zirconia Electrolyte in Solid Oxide Cells Operated in High Temperature Water Electrolysis , 2009 .
[13] Mogens Bjerg Mogensen,et al. Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .
[14] W. Lehnert,et al. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation , 1999 .
[15] Rolf W. Steinbrech,et al. Recent Results in Solid Oxide Fuel Cell Development at Forschungszentrum Juelich , 2009 .
[16] E. Ivers-Tiffée,et al. Microstructure of Nanoscaled La0.6Sr0.4CoO3‐δ Cathodes for Intermediate‐Temperature Solid Oxide Fuel Cells , 2011 .
[17] Werner Lehnert,et al. Degradation of Solid Oxide Fuel Cell Anodes Due to Sintering of Metal Particles Correlated Percolation Model , 1997 .
[18] Ellen Ivers-Tiffée,et al. Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni ∕ 8YSZ Cermet Electrodes , 2008 .
[19] Jin-Young Kim,et al. Performance Deterioration of Ni-YSZ Anode Induced by Electrochemically Generated Steam in Solid Oxide Fuel Cells , 2010 .
[20] Frank Tietz,et al. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells , 2000 .
[21] A. N. Busawon,et al. Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .
[22] W. Weppner. VOLTAGE RELAXATION MEASUREMENTS OF THE ELECTRON AND HOLE MOBILITIES IN YTTRIA-DOPED ZIRCONIA , 1977 .
[23] H. Schichlein,et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .
[24] S. Uhlenbruck,et al. Thin film coating technologies of (Ce,Gd)O2-δ interlayers for application in ceramic high-temperature fuel cells , 2007 .
[25] R. Vaßen,et al. Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells , 2001 .
[26] A. Palenzona,et al. The Y-Zr (Yttrium-Zirconium) system , 1991 .
[27] Andreas Mai,et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer , 2006 .
[28] W. C. Heraeus,et al. Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen , 1899 .
[29] H. Abe,et al. NiO/YSZ nanocomposite particles synthesized via co-precipitation method for electrochemically active Ni/YSZ anode , 2009 .
[30] Michael D. Gross,et al. A Strategy for Achieving High-performance with SOFC Ceramic Anodes , 2007 .
[31] R. Schneider,et al. Decomposition of 8.5 mol.% Y2O3-doped zirconia and its contribution to the degradation of ionic conductivity , 2009 .
[32] Ellen Ivers-Tiffée,et al. Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .
[33] Philip Nash,et al. Phase diagrams of binary nickel alloys , 1991 .
[34] Andreas Mai,et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .
[35] Bernard A. Boukamp,et al. A package for impedance/admittance data analysis , 1986 .
[36] F. Tietz,et al. Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells , 2010 .
[37] J. O’Brien,et al. Conductivity degradation of NiO-containing 8YSZ and 10YSZ electrolyte during reduction , 2009 .
[38] W. Grogger,et al. Quantitative Energy-Filtering Transmission Electron Microscopy (EFTEM) , 2000, Microchimica Acta.
[39] M. Itagaki,et al. Complex impedance spectra of porous electrode with fractal structure , 2010 .
[40] G. Schiller,et al. Nanostructured functional layers for solid oxide fuel cells , 2009 .
[41] T. Wagner,et al. Electrochemically-induced reactions at Ni/ZrO2 interfaces , 1992 .