An enhanced image binarization method incorporating with Monte-Carlo simulation

We proposed an enhanced image binarization method. The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background, spatially-changed illumination, and uncertainties of block size in traditional method. The proposed method first partitions the image into square blocks that reflect local characteristics of the image. After image partitioning, each block is binarized using Otsu's thresholding method. To minimize the influence of the block size and the boundary effect, we incorporate Monte-Carlo simulation into the binarization algorithm. Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map, which illustrates the probability of each pixel classified as foreground. By setting a probability threshold, and separating foreground and background of the source image, the final binary image can be obtained. The described method has been tested by benchmark tests. Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.摘要本文基于蒙特卡洛模拟与局部阈值思想,提出了一种能够适应图像复杂背景、亮度不均条件的 灰阶图像二值化分割方法。该方法将灰阶图像划分为多个正方形子图像,每个子图像均反映了灰阶图 像的局部信息。先利用大津法对每个子图像进行二值化分割,再将所有二值化后的子图像重新合并后 形成灰阶图像的二值化结果。针对局部阈值分割过程中子图像的尺寸选取问题及二值化后子图像合并 时的边界效应问题,本文结合蒙特卡洛模拟思想提出了改进算法。将子图像尺寸作为蒙特卡洛计算步 中的随机变量,通过大量迭代计算获取灰阶图像中每个像素被分割为目标和背景的概率,并按照指定 概率阈值对其进行划分。为验证所述方法的可行性与准确性,本文依托多个灰阶图像案例对方法的二 值化结果进行了测试,结果表明,本文提出的方法能够较好地处理复杂背景及亮度不均条件下的灰阶 图像。本方法可为区域性遥感影像的解译和地物识别提供支撑。

[1]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[2]  Derek Bradley,et al.  Adaptive Thresholding using the Integral Image , 2007, J. Graph. Tools.

[3]  Ioannis Pratikakis,et al.  DIBCO 2009: document image binarization contest , 2011, International Journal on Document Analysis and Recognition (IJDAR).

[4]  Yange Li,et al.  Noncontact detection of earthquake-induced landslides by an enhanced image binarization method incorporating with Monte-Carlo simulation , 2019, Geomatics, Natural Hazards and Risk.

[5]  Wayne Niblack,et al.  An introduction to digital image processing , 1986 .

[6]  Enrico Grisan,et al.  A review of thresholding strategies applied to human chromosome segmentation , 2012, Comput. Methods Programs Biomed..

[7]  Alfred M. Bruckstein,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[8]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[9]  Guang-qi Chen,et al.  A hybrid automatic thresholding approach using panchromatic imagery for rapid mapping of landslides , 2014 .

[10]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Abdelkrim Meziane,et al.  A new efficient binarization method: application to degraded historical document images , 2017, Signal Image Video Process..

[12]  Shanq-Jang Ruan,et al.  Adaptive thresholding algorithm: Efficient computation technique based on intelligent block detection for degraded document images , 2010, Pattern Recognit..

[13]  Chien-Hsing Chou,et al.  A binarization method with learning-built rules for document images produced by cameras , 2010, Pattern Recognit..

[14]  Yan Zhang,et al.  Document Image Binarization Based on NFCM , 2009, 2009 2nd International Congress on Image and Signal Processing.

[15]  Zheng Han,et al.  An integrated method for rapid estimation of the valley incision by debris flows , 2018 .

[16]  Nikos Papamarkos,et al.  An Evaluation Technique for Binarization Algorithms , 2008, J. Univers. Comput. Sci..

[17]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[18]  Ioannis Pratikakis,et al.  Adaptive degraded document image binarization , 2006, Pattern Recognit..

[19]  Khairuddin Omar,et al.  An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows , 2011, Pattern Recognit. Lett..

[20]  Jiangtao Wen,et al.  A new binarization method for non-uniform illuminated document images , 2013, Pattern Recognit..

[21]  Anil K. Jain,et al.  Segmentation of Document Images , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Jing-yu Yang,et al.  Binarization of Document Images with Complex Background , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[23]  Fernando Martin-Rodriguez New Tools for Gray Level Histogram Analysis, Applications in Segmentation , 2013, ICIAR 2013.

[24]  Nicole Vincent,et al.  Comparison of Niblack inspired binarization methods for ancient documents , 2009, Electronic Imaging.