PRECISE: efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric computation

Many geometric problems like generalized Voronoi diagrams, medial axis computations and boundary evaluation involve computation and manipulation of non-linear algebraic primitives like curves and surfaces. The algorithms designed for these problems make decisions based on signs of geometric predicates or on the roots of polynomials characterizing the problem. The reliability of the algorithm depends on the accurate evaluation of these signs and roots. In this paper, we present a {\em naive precision-driven computational model} to perform these computations reliably and demonstrate its effectiveness on a certain class of problems like sign of determinants with rational entries, boundary evaluation and curve arrangements. We also present a novel algorithm to compute all the roots of a univariate polynomial to any desired accuracy. The computational model along with the underlying number representation, precision-driven arithmetic and all the algorithms are implemented as part of a stand-alone software library, PRECISE.

[1]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[2]  Oliver Aberth,et al.  Iteration methods for finding all zeros of a polynomial simultaneously , 1973 .

[3]  J. Kuntzmann,et al.  Solutions Numeriques des Equations Algebriques , 1963 .

[4]  Chee-Keng Yap,et al.  A new constructive root bound for algebraic expressions , 2001, SODA '01.

[5]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[6]  Kurt Mehlhorn,et al.  A strong and easily computable separation bound for arithmetic expressions involving square roots , 1997, SODA '97.

[7]  Louis W. Ehrlich,et al.  A modified Newton method for polynomials , 1967, CACM.

[8]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[9]  Paul Pedersen Multivariate Sturm Theory , 1991, AAECC.

[10]  A. J. Korsak,et al.  Simultaneous Iteration towards All Roots of a Complex Polynomial , 1975 .

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[12]  Jürgen Herzberger,et al.  On the Convergence Speed of Some Algorithms for the Simultaneous Approximation of Polynomial Roots , 1974 .

[13]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[14]  Dinesh Manocha,et al.  MAPC: a library for efficient and exact manipulation of algebraic points and curves , 1999, SCG '99.

[15]  Richard P. Brent,et al.  Recent technical reports , 1977, SIGA.

[16]  Kurt Mehlhorn,et al.  Efficient exact geometric computation made easy , 1999, SCG '99.

[17]  Mariette Yvinec,et al.  A Complete Analysis of Clarkson's Algorithm for Safe Determinant Evaluation , 1996 .

[18]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[19]  Douglas M. Priest,et al.  Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[20]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[21]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[22]  D. Gaier,et al.  APPLIED AND COMPUTATIONAL COMPLEX ANALYSIS: Volume Three (A Wiley‐Interscience Volume in Pure and Applied Mathematics) , 1987 .

[23]  References , 1971 .

[24]  Dinesh Manocha,et al.  Eecient and Accurate B-rep Generation of Low Degree Sculptured Solids Using Exact Arithmetic:i - Representations , 1999 .

[25]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[26]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[27]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[28]  L. G. Lidia,et al.  A library for computational number theory , 1997 .

[29]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[30]  Olivier Devillers,et al.  Algebraic methods and arithmetic filtering for exact predicates on circle arcs , 2000, SCG '00.

[31]  T SmithBrian Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin's Theorems , 1970 .

[32]  Oliver Aberth,et al.  Precise computation using range arithmetic, via C++ , 1992, TOMS.

[33]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[34]  Kurt Mehlhorn,et al.  Exact geometric computation made easy , 1999 .

[35]  D. C. Handscomb,et al.  Computation of the Latent Roots of a Hessenberg Matrix by Bairstow's Method , 1962, Comput. J..

[36]  Victor Y. Pan,et al.  Computing exact geometric predicates using modular arithmetic with single precision , 1997, SCG '97.

[37]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[38]  Jonathan Richard Shewchuk,et al.  Robust adaptive floating-point geometric predicates , 1996, SCG '96.