A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex

[1]  Joshua W. Brown,et al.  Risk prediction and aversion by anterior cingulate cortex , 2007, Cognitive, affective & behavioral neuroscience.

[2]  Jeremy R. Reynolds,et al.  A computational model of fractionated conflict-control mechanisms in task-switching , 2007, Cognitive Psychology.

[3]  M. Botvinick,et al.  Error-likelihood prediction in the medial frontal cortex: a critical evaluation. , 2007, Cerebral cortex.

[4]  Thomas E. Hazy,et al.  PVLV: the primary value and learned value Pavlovian learning algorithm. , 2007, Behavioral neuroscience.

[5]  D. Kumaran,et al.  Frames, Biases, and Rational Decision-Making in the Human Brain , 2006, Science.

[6]  Michael J. Frank,et al.  A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. , 2006, Behavioral neuroscience.

[7]  John J. Foxe,et al.  The Anterior Cingulate and Error Avoidance , 2006, The Journal of Neuroscience.

[8]  Jerome R. Busemeyer,et al.  Using Cognitive Models to Map Relations Between Neuropsychological Disorders and Human Decision-Making Deficits , 2005, Psychological science.

[9]  Erich O. Richter,et al.  Human Anterior Cingulate Cortex Neurons Encode Cognitive and Emotional Demands , 2005, The Journal of Neuroscience.

[10]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[11]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[12]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[13]  Carlo Contoreggi,et al.  Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. , 2005, Brain research. Cognitive brain research.

[14]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[15]  Joshua W. Brown,et al.  Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex , 2005, Science.

[16]  M. Roesch,et al.  Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. , 2005, Journal of neurophysiology.

[17]  Clay B. Holroyd,et al.  A mechanism for error detection in speeded response time tasks. , 2005, Journal of experimental psychology. General.

[18]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[19]  M. Walton,et al.  Interactions between decision making and performance monitoring within prefrontal cortex , 2004, Nature Neuroscience.

[20]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[21]  Stephen Grossberg,et al.  How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades , 2004, Neural Networks.

[22]  Deanna M Barch,et al.  Opiate addicts lack error-dependent activation of rostral anterior cingulate , 2004, Biological Psychiatry.

[23]  Jonathan D. Cohen,et al.  Anterior Cingulate Conflict Monitoring and Adjustments in Control , 2004, Science.

[24]  S. P. Wise,et al.  Primate frontal cortex: effects of stimulus and movement , 2004, Experimental Brain Research.

[25]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[26]  Geraint Rees,et al.  Self-control during response conflict by human supplementary eye field , 2003, Nature Neuroscience.

[27]  E. Weber,et al.  A Domain-Specific Risk-Attitude Scale: Measuring Risk Perceptions and Risk Behaviors , 2002 .

[28]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[29]  R. Simons,et al.  Error-related brain activity in obsessive–compulsive undergraduates , 2002, Psychiatry Research.

[30]  Kristopher J Preacher,et al.  On the practice of dichotomization of quantitative variables. , 2002, Psychological methods.

[31]  D. V. Cramon,et al.  Subprocesses of Performance Monitoring: A Dissociation of Error Processing and Response Competition Revealed by Event-Related fMRI and ERPs , 2001, NeuroImage.

[32]  Jonathan D. Cohen,et al.  Anterior Cingulate Cortex, Conflict Monitoring, and Levels of Processing , 2001, NeuroImage.

[33]  J D Schall,et al.  Dynamic dissociation of visual selection from saccade programming in frontal eye field. , 2001, Journal of neurophysiology.

[34]  C. Carter,et al.  Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. , 2001, The American journal of psychiatry.

[35]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[36]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[37]  C. Carter,et al.  Anterior Cingulate Metabolism Correlates with Stroop Errors in Paranoid Schizophrenia Patients , 2001, Neuropsychopharmacology.

[38]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[39]  G. Glover,et al.  Error‐related brain activation during a Go/NoGo response inhibition task , 2001, Human brain mapping.

[40]  A. Tversky,et al.  Choices, Values, and Frames , 2000 .

[41]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[42]  David P. Farrington,et al.  Some benefits of dichotomization in psychiatric and criminological research , 2000 .

[43]  J. Dostrovsky,et al.  Human anterior cingulate cortex neurons modulated by attention-demanding tasks. , 2000, Journal of neurophysiology.

[44]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[45]  R. Knight,et al.  Prefrontal–cingulate interactions in action monitoring , 2000, Nature Neuroscience.

[46]  M. Coles,et al.  Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. , 2000, Journal of experimental psychology. Human perception and performance.

[47]  W. Gehring,et al.  Action-Monitoring Dysfunction in Obsessive-Compulsive Disorder , 2000, Psychological science.

[48]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[49]  Jonathan D. Cohen,et al.  Conflict monitoring versus selection-for-action in anterior cingulate cortex , 1999, Nature.

[50]  J. Tanji,et al.  Role for cingulate motor area cells in voluntary movement selection based on reward. , 1998, Science.

[51]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[52]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[53]  C. Frith,et al.  How do we predict the consequences of our actions? a functional imaging study , 1998, Neuropsychologia.

[54]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[55]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  M. Posner,et al.  Localization of a Neural System for Error Detection and Compensation , 1994 .

[57]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[58]  D. Meyer,et al.  A Neural System for Error Detection and Compensation , 1993 .

[59]  Karl J. Friston,et al.  Patterns of Cerebral Blood Flow in Schizophrenia , 1992, British Journal of Psychiatry.

[60]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[61]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[62]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[63]  H. Lesieur,et al.  The South Oaks Gambling Screen (SaGS): A New Instrument for the Identification of Pathological Gamblers , 2010 .

[64]  D. Pandya,et al.  Cingulate cortex of the rhesus monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[65]  V. B. Brooks,et al.  ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning , 1986, Neuroscience Letters.

[66]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[67]  Donald A. Norman,et al.  Attention to Action , 1986 .

[68]  G. Logan On the ability to inhibit thought and action , 1984 .

[69]  D. Norman,et al.  Attention to action: Willed and automatic control , 1980 .

[70]  G. Schwartz,et al.  Consciousness and Self-Regulation , 1976 .

[71]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .