Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem

Investigates the novel solution structures arising in multi-project scheduling.Presents specific algorithm components for scheduling of multiple projects.Combines all the algorithm components with a hyper-heuristic and memetic algorithm.Significantly outperforms other methods on a set of "hidden" instances.Produces new best solutions for some long-standing multi-mode PSPLIB instances. Multi-mode resource and precedence-constrained project scheduling is a well-known challenging real-world optimisation problem. An important variant of the problem requires scheduling of activities for multiple projects considering availability of local and global resources while respecting a range of constraints. A critical aspect of the benchmarks addressed in this paper is that the primary objective is to minimise the sum of the project completion times, with the usual makespan minimisation as a secondary objective. We observe that this leads to an expected different overall structure of good solutions and discuss the effects this has on the algorithm design. This paper presents a carefully-designed hybrid of Monte-Carlo tree search, novel neighbourhood moves, memetic algorithms, and hyper-heuristic methods. The implementation is also engineered to increase the speed with which iterations are performed, and to exploit the computing power of multicore machines. Empirical evaluation shows that the resulting information-sharing multi-component algorithm significantly outperforms other solvers on a set of "hidden" instances, i.e. instances not available at the algorithm design phase.

[1]  Gregory Gutin,et al.  A New Approach to Population Sizing for Memetic Algorithms: A Case Study for the Multidimensional Assignment Problem , 2010, Evolutionary Computation.

[2]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[3]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[4]  Grzegorz Waligóra,et al.  Project scheduling with finite or infinite number of activity processing modes - A survey , 2011, Eur. J. Oper. Res..

[5]  Wang Chen,et al.  An efficient hybrid algorithm for resource-constrained project scheduling , 2010, Inf. Sci..

[6]  Yousef Alipouri,et al.  Solving resource-constrained project scheduling problem with evolutionary programming , 2013, J. Oper. Res. Soc..

[7]  M. Koshiba,et al.  Practical Quantum Cryptography: A Comprehensive Analysis (Part One) , 2000, quant-ph/0009027.

[8]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[9]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[10]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[11]  Mario Vanhoucke,et al.  Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers , 2011, Eur. J. Oper. Res..

[12]  Mario Vanhoucke,et al.  A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[13]  Anshul Mittal,et al.  A GENETIC ALGORITHM , 2010 .

[14]  Greet Van den Berghe,et al.  An Integer Programming Approach to a Generalized Project Scheduling Problem , 2014 .

[15]  Ender Özcan,et al.  The Interleaved Constructive Memetic Algorithm and its application to timetabling , 2012, Comput. Oper. Res..

[16]  Mario Vanhoucke,et al.  An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances , 2014, Eur. J. Oper. Res..

[17]  Taïcir Loukil,et al.  Differential evolution for solving multi-mode resource-constrained project scheduling problems , 2009, Comput. Oper. Res..

[18]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[19]  Robert J Willis,et al.  An iterative scheduling technique for resource-constrained project scheduling , 1992 .

[20]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[21]  Erik Demeulemeester,et al.  RanGen: A Random Network Generator for Activity-on-the-Node Networks , 2003, J. Sched..

[22]  刘漫丹 文化基因算法(Memetic Algorithm)研究进展 , 2007 .

[23]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[24]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..

[25]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[26]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[27]  Martin Josef Geiger Iterated Variable Neighborhood Search for the resource constrained multi-mode multi-project scheduling problem , 2013, ArXiv.

[28]  Chen Fang,et al.  An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem , 2012, Comput. Oper. Res..

[29]  Gündüz Ulusoy,et al.  Multi-mode resource constrained multi-project scheduling and resource portfolio problem , 2015, Eur. J. Oper. Res..

[30]  KorkmazEmin Erkan,et al.  A comprehensive analysis of hyper-heuristics , 2008 .

[31]  Ender Özcan,et al.  HySST: Hyper-heuristic Search Strategies and Timetabling , 2012 .

[32]  Jerzy Kamburowski,et al.  Minimizing the complexity of an activity network , 2000, Networks.

[33]  Armin Scholl,et al.  A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times , 2009 .

[34]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[35]  María Pilar Tormos,et al.  A multicriteria heuristic method to improve resource allocation in multiproject scheduling , 2000, Eur. J. Oper. Res..

[36]  Michael C. Georgiadis,et al.  MILP formulations for single- and multi-mode resource-constrained project scheduling problems , 2012, Comput. Chem. Eng..

[37]  Mario Vanhoucke,et al.  Using resource scarceness characteristics to solve the multi-mode resource-constrained project scheduling problem , 2011, J. Heuristics.

[38]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[39]  Tom V. Mathew Genetic Algorithm , 2022 .

[40]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[41]  Willy Herroelen,et al.  On the use of the complexity index as a measure of complexity in activity networks , 1996 .

[42]  Konstantinos P. Anagnostopoulos,et al.  A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem , 2014, Inf. Sci..

[43]  Pieter Smet,et al.  The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem , 2016, J. Sched..

[44]  Greet Van den Berghe,et al.  A Learning Metaheuristic for the Multi Mode Resource Constrained Project Scheduling Problem , 2009, LION 2009.

[45]  Matthias Dehmer,et al.  Exploring Statistical and Population Aspects of Network Complexity , 2012, PloS one.

[46]  Ahmed Kheiri,et al.  Multi-stage hyper-heuristics for optimisation problems , 2014 .

[47]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[48]  Patrick De Causmaecker,et al.  An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem , 2014, Eur. J. Oper. Res..

[49]  Thomas Stützle,et al.  Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization , 2014, PPSN.

[50]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[51]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[52]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[53]  John R. Woodward,et al.  Hyper-Heuristics , 2015, GECCO.

[54]  Dirk Sudholt,et al.  Crossover speeds up building-block assembly , 2012, GECCO '12.

[55]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[56]  Gündüz Ulusoy,et al.  A survey on the resource-constrained project scheduling problem , 1995 .

[57]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[58]  John H. Holland,et al.  When will a Genetic Algorithm Outperform Hill Climbing , 1993, NIPS.

[59]  Ender Özcan,et al.  A stochastic local search algorithm with adaptive acceptance for high-school timetabling , 2016, Ann. Oper. Res..

[60]  Philippe Fortemps,et al.  A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[61]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[62]  Graham Kendall,et al.  A Classification of Hyper-heuristics Approaches – Revisited , 2017 .

[63]  Ender Özcan,et al.  Memes, Self-generation and Nurse Rostering , 2006, PATAT.

[64]  Benjamin Doerr,et al.  Crossover can provably be useful in evolutionary computation , 2008, GECCO '08.

[65]  Mario Vanhoucke An Overview of Recent Research Results and Future Research Avenues Using Simulation Studies in Project Management , 2013 .

[66]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[67]  Patrick De Causmaecker,et al.  A learning-based optimization approach to multi-project scheduling , 2015, J. Sched..

[68]  Erik Demeulemeester,et al.  An Exact Procedure for the Resource-Constrained Weighted Earliness–Tardiness Project Scheduling Problem , 2001, Ann. Oper. Res..

[69]  Ender Özcan,et al.  An iterated multi-stage selection hyper-heuristic , 2016, Eur. J. Oper. Res..

[70]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[71]  Marcone J. F. Souza,et al.  Elsevier Editorial System(tm) for Computers & Operations Research Manuscript Draft Title: Multi-objective Metaheuristic Algorithms for the Resource- Constrained Project Scheduling Problem with Precedence Relations , 2022 .

[72]  Ender Özcan,et al.  A Hyper-Heuristic Based on Random Gradient, Greedy and Dominance , 2011, ISCIS.

[73]  Gregory Gutin,et al.  A memetic algorithm for the generalized traveling salesman problem , 2008, Natural Computing.

[74]  Chen Fang,et al.  An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem , 2011, Inf. Sci..

[75]  Edmund K. Burke,et al.  The practice and theory of automated timetabling , 2014, Ann. Oper. Res..