A single compartment model of pacemaking in dissasociated Substantia nigra neurons

[1]  Míriam R. García,et al.  Energetics of Ion Transport in Dopaminergic Substantia nigra Neurons , 2012 .

[2]  Míriam R. García,et al.  L-type calcium channel block and energy implications for substantia nigra neurons , 2012 .

[3]  P. Wellstead,et al.  Modelling and Simulation of Brain Energy Metabolism: Energy and Parkinson’s Disease , 2012 .

[4]  Eva Balsa-Canto,et al.  Dynamic Model Building Using Optimal Identification Strategies, with Applications in Bioprocess Engineering , 2011 .

[5]  Rodolphe Sepulchre,et al.  How Modeling Can Reconcile Apparently Discrepant Experimental Results: The Case of Pacemaking in Dopaminergic Neurons , 2011, PLoS Comput. Biol..

[6]  Mathieu Cloutier,et al.  An energy systems approach to Parkinson's disease , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[7]  Clair Poignard,et al.  Ion fluxes, transmembrane potential, and osmotic stabilization: a new dynamic electrophysiological model for eukaryotic cells , 2011, European Biophysics Journal.

[8]  Carmen C. Canavier,et al.  Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron , 2010, Journal of Computational Neuroscience.

[9]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[10]  J. Tepper Neurophysiology of Substantia Nigra Dopamine Neurons , 2010 .

[11]  David P. Nickerson,et al.  An overview of the CellML API and its implementation , 2010, BMC Bioinformatics.

[12]  Mathieu Cloutier,et al.  The control systems structures of energy metabolism , 2010, Journal of The Royal Society Interface.

[13]  Vladimir N. Uversky,et al.  Calbindin-D28K acts as a calcium-dependent chaperone suppressing α-synuclein fibrillation in vitro , 2010, Central European Journal of Biology.

[14]  John P. Horn,et al.  Cav1.3 Channel Voltage Dependence, Not Ca2+ Selectivity, Drives Pacemaker Activity and Amplifies Bursts in Nigral Dopamine Neurons , 2009, The Journal of Neuroscience.

[15]  Y. Nomura,et al.  Functional Expression of an Arachnid Sodium Channel Reveals Residues Responsible for Tetrodotoxin Resistance in Invertebrate Sodium Channels* , 2009, The Journal of Biological Chemistry.

[16]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[17]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[18]  P. Hunter,et al.  The CellML Model Repository , 2008, Bioinform..

[19]  A. Parekh,et al.  Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function , 2008, The Journal of physiology.

[20]  David T. Yue,et al.  Mechanism of Local and Global Ca2+ Sensing by Calmodulin in Complex with a Ca2+ Channel , 2008, Cell.

[21]  M. Duchen,et al.  Mitochondria and calcium in health and disease. , 2008, Cell calcium.

[22]  S. Matsuoka,et al.  Modeling Energetics of Ion Transport, Membrane Sensing and Systems Biology of the Heart , 2007 .

[23]  D. Surmeier,et al.  Calcium, ageing, and neuronal vulnerability in Parkinson's disease , 2007, The Lancet Neurology.

[24]  J. Bargas,et al.  Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease. , 2007, Journal of neurophysiology.

[25]  D. James Surmeier,et al.  ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease , 2007, Nature.

[26]  D. Maraganore,et al.  A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease , 2007, PLoS genetics.

[27]  B. Bean,et al.  Roles of Subthreshold Calcium Current and Sodium Current in Spontaneous Firing of Mouse Midbrain Dopamine Neurons , 2007, The Journal of Neuroscience.

[28]  J. Jaiswal Calcium — how and why? , 2001, Journal of Biosciences.

[29]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[30]  C. Canavier,et al.  An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. , 2006, Journal of neurophysiology.

[31]  L. Moran,et al.  Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease , 2006, Neurogenetics.

[32]  D James Surmeier,et al.  Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? , 2005, Current Opinion in Neurobiology.

[33]  A. Mandal,et al.  Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin. , 2004, Biophysical journal.

[34]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[35]  Anthony Varghese,et al.  Computing Transient Gating Charge Movement of Voltage-Dependent Ion Channels , 2002, Journal of Computational Neuroscience.

[36]  Carmen C. Canavier,et al.  Sodium Dynamics Underlying Burst Firing and Putative Mechanisms for the Regulation of the Firing Pattern in Midbrain Dopamine Neurons: A Computational Approach , 2004, Journal of Computational Neuroscience.

[37]  K. Fukunaga,et al.  Ca2+/calmodulin-dependent protein kinase II immunoreactivity in Lewy bodies , 2004, Acta Neuropathologica.

[38]  Carmen C Canavier,et al.  A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. , 2004, Journal of neurophysiology.

[39]  D. Uhm,et al.  Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta , 2003, Journal of Cell Science.

[40]  Samantha Wietzikoski,et al.  Evidence for the substantia nigra pars compacta as an essential component of a memory system independent of the hippocampal memory system , 2003, Neurobiology of Learning and Memory.

[41]  Jochen Roeper,et al.  Selective Coupling of T-Type Calcium Channels to SK Potassium Channels Prevents Intrinsic Bursting in Dopaminergic Midbrain Neurons , 2002, The Journal of Neuroscience.

[42]  Y Rudy,et al.  Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. , 2001, Biophysical journal.

[43]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[44]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[45]  M. Takada,et al.  Immunohistochemical localization of voltage‐gated calcium channels in substantia nigra dopamine neurons , 2001, The European journal of neuroscience.

[46]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[47]  G. Stuart,et al.  Direct measurement of specific membrane capacitance in neurons. , 2000, Biophysical journal.

[48]  C. Wilson,et al.  Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.

[49]  J. Myrheim,et al.  A theory for the membrane potential of living cells , 1998, European Biophysics Journal.

[50]  W. Meck,et al.  Neuropsychological mechanisms of interval timing behavior. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  B. Amini,et al.  Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. , 1999, Journal of neurophysiology.

[52]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.

[53]  L. Blatter,et al.  Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. , 1999, Cell calcium.

[54]  A. Goldin Diversity of Mammalian Voltage‐Gated Sodium Channels , 1999, Annals of the New York Academy of Sciences.

[55]  T. Ishii,et al.  Mechanism of calcium gating in small-conductance calcium-activated potassium channels , 1998, Nature.

[56]  A. Verkhratsky,et al.  Integrative Aspects of Calcium Signalling , 1998, Springer US.

[57]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[58]  D. Gadsby,et al.  Voltage Dependence of the Na/K Pump , 1997, The Journal of Membrane Biology.

[59]  S. T. Kitai,et al.  Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra , 1993, Neuroscience Research.

[60]  I. Engberg,et al.  Nifedipine‐ and omega‐conotoxin‐sensitive Ca2+ conductances in guinea‐pig substantia nigra pars compacta neurones. , 1993, The Journal of physiology.

[61]  F. Ashcroft,et al.  Identification and electrophysiology of isolated pars compacta neurons from guinea-pig substantia nigra , 1991, Neuroscience.

[62]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[63]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[64]  R. Abercrombie,et al.  Free diffusion coefficient of ionic calcium in cytoplasm. , 1987, Cell calcium.

[65]  D DiFrancesco,et al.  A model of cardiac electrical activity incorporating ionic pumps and concentration changes. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[67]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates , 1983, Neuroscience.

[68]  J. Nicholls From neuron to brain , 1976 .

[69]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.