Axiomatizing early and late input by variable elimination

Variable binding input actions in process algebra expressions can be characterized by early as well as by late bisimulation, where the distinction is concerned with whether or not variables are instantiated when considering process equivalence. Baeten and Bergstra have given an axiomatization of late and early bisimulation for finite data sets. We illustrate their method by an example, provide the necessary intuition, formulate correctness properties, list errata, and discuss possibilities for future research. Note: Supported by NWO, the Netherlands Organization for Scientific Research, project 612-16-433, HOOP: Higher-Order and Object-Oriented Processes. 1991 Mathematics Subject Classification: 68Q60, 68QlO, 68Q4

[1]  Jan A. Bergstra,et al.  Algebraic specification , 1989 .

[2]  Davide Sangiorgi,et al.  Algebraic Theories for Name-Passing Calculi , 1993, Inf. Comput..

[3]  Jan A. Bergstra,et al.  Discrete Time Process Algebra with Abstraction , 1995, FCT.

[4]  Jan A. Bergstra,et al.  Process Algebra with Signals and Conditions , 1990 .

[5]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[6]  Gerard Zwaan,et al.  A Taxonomy of Sublinear Multiple Keyword Pattern Matching Algorithms , 1996, Sci. Comput. Program..

[7]  Jan A. Bergstra,et al.  Verification of an alternating bit protocol by means of process algebra , 1985, Mathematical Methods of Specification and Synthesis of Software Systems.

[8]  Fairouz Kamareddine,et al.  A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths , 1996, Log. J. IGPL.

[9]  Martin Wirsing,et al.  Algebraic Specification , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  Paul Klint,et al.  A meta-environment for generating programming environments , 1989, TSEM.

[11]  Federico M. Sioson,et al.  Equational bases of boolean algebras , 1964, Journal of Symbolic Logic.

[12]  Reniers,et al.  Empty interworkings and refinement semantics of interworkings revised , 1995 .

[13]  Davide Sangiorgi pi-Calculus, Internal Mobility, and Agent-Passing Calculi , 1996, Theor. Comput. Sci..

[14]  Jan A. Bergstra,et al.  Homomorphism Preserving Algebraic Specifications Require Hidden Sorts , 1995, Inf. Comput..

[15]  van Hpj Rik Geldrop Deriving the Aho-Corasick algorithms : a case study into the synergy of programming methods , 1993 .

[16]  van Km Kees Hee,et al.  Systems engineering : a formal approach. Part I. System concepts , 1993 .

[17]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[18]  Chris Verhoef,et al.  Concrete process algebra , 1995, LICS 1995.

[19]  Robin Milner,et al.  Modal Logics for Mobile Processes , 1991, Theor. Comput. Sci..

[20]  Orna Grumberg,et al.  Abstract interpretation of reactive systems : preservation of CTL* , 1995 .

[21]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[22]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[23]  P. Niebert,et al.  On the connection of partial order logics and partial order reduction methods , 1995 .

[24]  T Tom Verhoeff,et al.  A continuous version of the prisoner's dilemma , 1993 .