Mesh Generation and Mesh Adaptivity: Theory and Techniques

In this chapter we are concerned with mesh generation methods and mesh adaptivity issues. Many techniques are nowadays available to complete meshes of arbitrary domains for computational purposes. Planar, surface and volume meshing have been automated to a large extent. Over the last few years, meshing activities have been focused on adaptive schemes where the features of a solution field must be accurately captured. To this end, meshing techniques must be revisited in order to be capable of completing high quality meshes conforming to these features. Error estimates are therefore used to analyze the solution field at a given stage and, on the basis of the results the information they yield, adapted meshes are created before computing the next stage of the solution field. A number of novel meshing issues must be addressed including how to construct a mesh adapted to what the error estimate prescribes, how to handle large size meshes, how to consider moving boundary problems, etc. Keywords: mesh generation; mesh adaptation; adaptivity; h-method; adaptive computation; parallel meshing; moving boundary problems; FEM applications; CFD; solid mechanics

[1]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[2]  Yannis Kallinderis,et al.  Hybrid prismatic/tetrahedral grid generation for complex geometries , 1995 .

[3]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[4]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[5]  Rainald Löhner,et al.  Automatic unstructured grid generators , 1997 .

[6]  Carlo L. Bottasso,et al.  A Procedure for Tetrahedral Boundary Layer Mesh Generation , 2002, Engineering with Computers.

[7]  Robert M. O'Bara,et al.  Automatic p-version mesh generation for curved domains , 2004, Engineering with Computers.

[8]  Carlo L. Bottasso,et al.  Anisotropic mesh adaption by metric‐driven optimization , 2004 .

[9]  K. R. Grice,et al.  Robust, geometrically based, automatic two‐dimensional mesh generation , 1987 .

[10]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[11]  D. Ait-Ali-Yahia,et al.  Anisotropic mesh adaptation for 3D flows on structured and unstructured grids , 2000 .

[12]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[13]  Cécile Dobrzynski,et al.  Adaptation de Maillage anisotrope 3D et application à l'aéro-thermique des bâtiments , 2005 .

[14]  Paul-Louis George,et al.  Quality mesh generation , 2000 .

[15]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[16]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[17]  Mikhail Shashkov,et al.  An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .

[18]  S. H. Lo,et al.  Automatic mesh generation and adaptation by using contours , 1991 .

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  R. Löhner,et al.  Generation of viscous grids at ridges and corners , 2009 .

[21]  Marie-Gabrielle Vallet Génération de maillages éléments finis anisotropes et adaptatifs , 1992 .

[22]  J. Peraire,et al.  UNSTRUCTURED TETRAHEDRAL MESH GENERATION FOR THREE-DIMENSIONAL VISCOUS FLOWS , 1996 .

[23]  Martin Berzins,et al.  Mesh Quality: A Function of Geometry, Error Estimates or Both? , 1999, Engineering with Computers.

[24]  Jean-François Remacle,et al.  Transient adaptivity applied to two-phase incompressible flows , 2008, J. Comput. Phys..

[25]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[26]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[27]  Rainald Löhner,et al.  Parallel Advancing Front Grid Generation , 1999, IMR.

[28]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[29]  P. George,et al.  Delaunay's mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra , 1992 .

[30]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[31]  H. Borouchaki,et al.  Simplification of surface mesh using Hausdorff envelope , 2005 .

[32]  Deborah Greaves,et al.  Hierarchical tree-based finite element mesh generation , 1999 .

[33]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[34]  David L. Marcum,et al.  Adaptive unstructured grid generation for viscous flow applications , 1995 .

[35]  Patrick M. Knupp,et al.  Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement , 1999, IMR.

[36]  Shahyar Pirzadeh,et al.  Viscous unstructured three-dimensional grids by the advancing-layers method , 1994 .

[37]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[38]  Ivo Babuška,et al.  Approximation properties of the h-p version of the finite element method , 1996 .

[39]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[40]  Dereck S. Meek,et al.  A triangular G1 patch from boundary curves , 1996, Comput. Aided Des..

[41]  P. George,et al.  ‘Ultimate’ robustness in meshing an arbitrary polyhedron , 2003 .

[42]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[43]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[44]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[45]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[46]  Pere Brunet,et al.  Directional adaptive surface triangulation , 1999, Comput. Aided Geom. Des..

[47]  Anath Fischer,et al.  Adaptive mesh generation based on multi-resolution quadtree representation , 2000 .

[48]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[49]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[50]  J. Tinsley Oden,et al.  Optimal h-p finite element methods , 1994 .

[51]  Nguyen-Van-Phai,et al.  Automatic mesh generation with tetrahedron elements , 1982 .

[52]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[53]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[54]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[55]  John C. Vassberg,et al.  Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .

[56]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[57]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[58]  W. A. Cook Body oriented (natural) co-ordinates for generating three-dimensional meshes , 1974 .

[59]  Rainald Löhner Generation of Unstructured Grids Suitable for Rans Calculations , 1999 .

[60]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[61]  Loïc Maréchal A New Approach to Octree-Based Hexahedral Meshing , 2001, IMR.

[62]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[63]  Rainald Löhner,et al.  Extensions and improvements of the advancing front grid generation technique , 1996 .

[64]  K. Nakahashi,et al.  Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flow Applications , 1998 .

[65]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[66]  Thierry Coupez Grandes transformations et remaillage automatique , 1991 .

[67]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[68]  S. Rebay Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm , 1993 .

[69]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[70]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[71]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[72]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[73]  Nigel P. Weatherill,et al.  A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing , 2007 .

[74]  J. Z. Zhu,et al.  The finite element method , 1977 .

[75]  Nigel P. Weatherill,et al.  The construction of large unstructured grids by parallel Delaunay grid generation , 2000 .

[76]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[77]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[78]  N. Weatherill,et al.  Unstructured grid generation using iterative point insertion and local reconnection , 1995 .

[79]  David L. Marcum,et al.  Generation of unstructured grids for viscous flow applications , 1995 .

[80]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[81]  J. A. George Computer implementation of the finite element method , 1971 .

[82]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[83]  Timothy J. Baker,et al.  Mesh Movement and Metamorphosis , 2002, Engineering with Computers.

[84]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[85]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[86]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[87]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[88]  Rainald Loehner,et al.  Matching semi-structured and unstructured grids for Navier-Stokes calculations , 1993 .

[89]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[90]  Rainald Löhner,et al.  Three‐dimensional parallel unstructured grid generation , 1995 .

[91]  Patrick M. Knupp,et al.  Fundamentals of Grid Generation , 2020 .

[92]  Kazuhiro Nakahashi,et al.  An Approach to Generate High Quality Unstructured Hybrid Meshes , 2006 .

[93]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[94]  Robert Schneiders,et al.  Octree-Based Hexahedral Mesh Generation , 2000, Int. J. Comput. Geom. Appl..

[95]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[96]  D. Mavriplis An advancing front Delaunay triangulation algorithm designed for robustness , 1993 .

[97]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[98]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .

[99]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[100]  Mark S. Shephard,et al.  Boundary layer mesh generation for viscous flow simulations , 2000 .

[101]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[102]  Rolf Bünten,et al.  Automatic generation of hexahedral finite element meshes , 1995, Comput. Aided Geom. Des..

[103]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[104]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[105]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .