Qualitative properties of a cooperative degenerate Lotka-Volterra model

[1]  Wenjie Gao,et al.  Global existence and nonexistence for some degenerate and strongly coupled quasilinear parabolic systems , 2012 .

[2]  Chunlai Mu,et al.  A degenerate parabolic system with localized sources and nonlocal boundary condition , 2012 .

[3]  Boying Wu,et al.  A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations , 2011 .

[4]  Zhigui Lin,et al.  Periodicity and blowup in a two-species cooperating model , 2011 .

[5]  Jian Wang Global existence and blow-up solutions for doubly degenerate parabolic system with nonlocal source , 2011 .

[6]  Hua Zhou,et al.  Coexistence in a strongly coupled system describing a two-species cooperative model , 2007, Appl. Math. Lett..

[7]  Jingxue Yin,et al.  Elliptic And Parabolic Equations , 2006 .

[8]  Manuel Delgado,et al.  Stability and uniqueness for cooperative degenerate Lotka-Volterra model , 2002 .

[9]  Zhuoqun Wu,et al.  Nonlinear Diffusion Equations , 2002 .

[10]  Yuan Lou,et al.  On diffusion-induced blowups in a mutualistic model , 2001 .

[11]  M. Vishnevskii On monotonicity of solutions to mixed problems for weakly-coupled cooperative parabolic systems , 1994 .

[12]  Vincenzo Vespri,et al.  Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations , 1993 .

[13]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[14]  Yasuhiro Takeuchi,et al.  Permanence and global stability for cooperative Lotka-Volterra diffusion systems , 1992 .

[15]  M. Pozio,et al.  Degenerate parabolic Problems in population dynamics , 1985 .

[16]  Jiebao Sun Asymptotic Bounds For Solutions Of A Periodic Reaction Diffusion System , 2010 .

[17]  Glenn F. Webb,et al.  Population Models Structured by Age, Size, and Spatial Position , 2008 .

[18]  Shigui Ruan,et al.  Structured population models in biology and epidemiology , 2008 .

[19]  G. Barles,et al.  Remarks on uniqueness results of the first eigenvalue of the p-Laplacian , 1988 .

[20]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[21]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .