XFEM modeling and homogenization of magnetoactive composites

This paper addresses the application of the extended finite element method (XFEM) to the modeling of two-dimensional coupled magneto-mechanical field problems. Continuum formulations of the stationary magnetic and the coupled magneto-mechanical boundary problem are outlined, and the corresponding weak forms are derived. The XFEM is applied to generate numerical models of a representative volume element, characterizing a magnetoactive composite material. Weak discontinuities occurring at material interfaces are modeled numerically by an enriched approximation of the primary field variables. In order to reduce the complexity of the representation of curved interfaces, an element local approach is proposed which allows an automated computation of the level set values. The composite’s effective behavior and its coupled magneto-mechanical response are computed numerically by a homogenization procedure. The scale transition process is based on the energy equivalence condition, which is satisfied by using periodic boundary conditions.

[1]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[2]  E LorensenWilliam,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987 .

[3]  Jin-Yeon Kim Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites , 2011 .

[4]  Evan Galipeau,et al.  The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites , 2012 .

[5]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[6]  J. Schröder Derivation of the localization and homogenization conditions for electro-mechanically coupled problems , 2009 .

[7]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[9]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[11]  A. Dorfmann,et al.  Mathematical modeling of magneto-sensitive elastomers , 2003 .

[12]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[13]  Jacob Aboudi,et al.  Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites , 2001 .

[14]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[15]  N. Buiron,et al.  Reversible magneto-elastic behavior : A multiscale approach , 2008 .

[16]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[17]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[18]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[19]  Wenbin Yu,et al.  Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method , 2009 .

[20]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[21]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  W. Clem Karl,et al.  A fast level set method without solving PDEs [image segmentation applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[23]  Alexander L. Kalamkarov,et al.  Asymptotic homogenization modeling and analysis of effective properties of smart composite reinforced and sandwich shells , 2007 .

[24]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[25]  C. Miehe,et al.  An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level , 2011 .

[26]  Joseph Ross Mitchell,et al.  A work-efficient GPU algorithm for level set segmentation , 2010, HPG '10.

[27]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[28]  L. G. Suttorp,et al.  Foundations of electrodynamics , 1972 .

[29]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[30]  M. Kästner,et al.  Multi-Scale Modelling and Simulation of Textile Reinforced Materials , 2006 .

[31]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[32]  Evan Galipeau,et al.  Homogenization-based constitutive models for magnetorheological elastomers at finite strain , 2011 .

[33]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[34]  P. Steinmann,et al.  Material and Spatial Motion Problems in Nonlinear Electro- and Magneto-elastostatics , 2010 .

[35]  Markus Kästner,et al.  Higher‐order extended FEM for weak discontinuities – level set representation, quadrature and application to magneto‐mechanical problems , 2013 .

[36]  Grégory Legrain,et al.  Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches , 2012, Computational Mechanics.

[37]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[38]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[39]  Martin D. Fox,et al.  Erratum: Distance regularized level set evolution and its application to image segmentation (IEEE Transactions on Image Processingvol (2010) 19:12 (3243-3254)) , 2011 .

[40]  C. Miehe,et al.  Variational principles in dissipative electro‐magneto‐mechanics: A framework for the macro‐modeling of functional materials , 2011 .

[41]  Nicolas Moës,et al.  Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .

[42]  Markus Kästner,et al.  Multiscale XFEM‐modelling and simulation of the inelastic material behaviour of textile‐reinforced polymers , 2011 .

[43]  R. Billardon,et al.  A multiscale model for magneto-elastic couplings , 1999 .

[44]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[45]  Alexander L. Kalamkarov,et al.  An asymptotic homogenization model for smart 3D grid-reinforced composite structures with generally orthotropic constituents , 2009 .

[46]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[47]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[48]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .