XFEM modeling and homogenization of magnetoactive composites
暂无分享,去创建一个
Markus Kästner | Volker Ulbricht | Jörg Brummund | Joseph Goldmann | C. Spieler | M. Kästner | J. Brummund | V. Ulbricht | J. Goldmann | C. Spieler
[1] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[2] E LorensenWilliam,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987 .
[3] Jin-Yeon Kim. Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites , 2011 .
[4] Evan Galipeau,et al. The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites , 2012 .
[5] Stéphane Bordas,et al. Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .
[6] J. Schröder. Derivation of the localization and homogenization conditions for electro-mechanically coupled problems , 2009 .
[7] John F. Canny,et al. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] T. Belytschko,et al. Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .
[9] R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[11] A. Dorfmann,et al. Mathematical modeling of magneto-sensitive elastomers , 2003 .
[12] T. Fries. A corrected XFEM approximation without problems in blending elements , 2008 .
[13] Jacob Aboudi,et al. Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites , 2001 .
[14] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[15] N. Buiron,et al. Reversible magneto-elastic behavior : A multiscale approach , 2008 .
[16] Gérard A. Maugin,et al. Electrodynamics Of Continua , 1990 .
[17] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[18] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[19] Wenbin Yu,et al. Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method , 2009 .
[20] Grégory Legrain,et al. High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .
[21] D Marr,et al. Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[22] W. Clem Karl,et al. A fast level set method without solving PDEs [image segmentation applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[23] Alexander L. Kalamkarov,et al. Asymptotic homogenization modeling and analysis of effective properties of smart composite reinforced and sandwich shells , 2007 .
[24] Ralph C. Smith,et al. Smart material systems - model development , 2005, Frontiers in applied mathematics.
[25] C. Miehe,et al. An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level , 2011 .
[26] Joseph Ross Mitchell,et al. A work-efficient GPU algorithm for level set segmentation , 2010, HPG '10.
[27] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[28] L. G. Suttorp,et al. Foundations of electrodynamics , 1972 .
[29] Thomas-Peter Fries,et al. Higher‐order XFEM for curved strong and weak discontinuities , 2009 .
[30] M. Kästner,et al. Multi-Scale Modelling and Simulation of Textile Reinforced Materials , 2006 .
[31] Ted Belytschko,et al. Modelling crack growth by level sets in the extended finite element method , 2001 .
[32] Evan Galipeau,et al. Homogenization-based constitutive models for magnetorheological elastomers at finite strain , 2011 .
[33] Chunming Li,et al. Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.
[34] P. Steinmann,et al. Material and Spatial Motion Problems in Nonlinear Electro- and Magneto-elastostatics , 2010 .
[35] Markus Kästner,et al. Higher‐order extended FEM for weak discontinuities – level set representation, quadrature and application to magneto‐mechanical problems , 2013 .
[36] Grégory Legrain,et al. Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based approaches , 2012, Computational Mechanics.
[37] N. Sukumar,et al. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .
[38] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[39] Martin D. Fox,et al. Erratum: Distance regularized level set evolution and its application to image segmentation (IEEE Transactions on Image Processingvol (2010) 19:12 (3243-3254)) , 2011 .
[40] C. Miehe,et al. Variational principles in dissipative electro‐magneto‐mechanics: A framework for the macro‐modeling of functional materials , 2011 .
[41] Nicolas Moës,et al. Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .
[42] Markus Kästner,et al. Multiscale XFEM‐modelling and simulation of the inelastic material behaviour of textile‐reinforced polymers , 2011 .
[43] R. Billardon,et al. A multiscale model for magneto-elastic couplings , 1999 .
[44] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[45] Alexander L. Kalamkarov,et al. An asymptotic homogenization model for smart 3D grid-reinforced composite structures with generally orthotropic constituents , 2009 .
[46] Ted Belytschko,et al. Arbitrary discontinuities in finite elements , 2001 .
[47] Hong Yi,et al. A survey of the marching cubes algorithm , 2006, Comput. Graph..
[48] Grégory Legrain,et al. An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .