Do yearly temperature cycles reduce species richness? Insights from calanoid copepods

[1]  M. Lewis,et al.  Temperature cycles affect colonization potential of calanoid copepods. , 2017, Journal of theoretical biology.

[2]  K. Joy Sexual Biology and Reproduction in Crustaceans (Thanumalaya Subramoniam) , 2017 .

[3]  B. Seibel,et al.  Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles. , 2016, Integrative and comparative biology.

[4]  C. Revie,et al.  Mathematical model describing the population dynamics of Ciona intestinalis, a biofouling tunicate on mussel farms in Prince Edward Island, Canada. , 2014 .

[5]  F. Jiguet,et al.  Faster Speciation and Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient , 2014, PLoS biology.

[6]  E. Dowle,et al.  Molecular evolution and the latitudinal biodiversity gradient , 2013, Heredity.

[7]  J. Fox,et al.  The intermediate disturbance hypothesis should be abandoned. , 2013, Trends in ecology & evolution.

[8]  Rampal S Etienne,et al.  Testing the metabolic theory of ecology. , 2012, Ecology letters.

[9]  T. Benton,et al.  Biodiversity tracks temperature over time , 2012, Proceedings of the National Academy of Sciences.

[10]  B. Seibel,et al.  Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific , 2012 .

[11]  D. Deibel,et al.  A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions , 2012 .

[12]  A. Pershing,et al.  First principles of copepod development help explain global marine diversity patterns , 2012, Oecologia.

[13]  F. Carlotti,et al.  Distribution of epipelagic metazooplankton across the Mediterranean Sea during the summer BOUM cruise , 2011 .

[14]  H. Hillebrand,et al.  Temperature mean and variance alter phytoplankton biomass and biodiversity in a long‐term microcosm experiment , 2011 .

[15]  L. Legendre,et al.  Marine copepod diversity patterns and the metabolic theory of ecology , 2011, Oecologia.

[16]  H. Ross,et al.  Energy and the tempo of evolution in amphibians , 2010 .

[17]  R. Lanfear,et al.  A generation time effect on the rate of molecular evolution in invertebrates. , 2010, Molecular biology and evolution.

[18]  J. Shurin,et al.  Environmental stability and lake zooplankton diversity - contrasting effects of chemical and thermal variability. , 2010, Ecology letters.

[19]  H. Ross,et al.  Latitude, elevation and the tempo of molecular evolution in mammals , 2009, Proceedings of the Royal Society B: Biological Sciences.

[20]  L. Legendre,et al.  Global latitudinal variations in marine copepod diversity and environmental factors , 2009, Proceedings of the Royal Society B: Biological Sciences.

[21]  Willem Renema,et al.  Hopping Hotspots: Global Shifts in Marine Biodiversity , 2008, Science.

[22]  J. Kerr,et al.  A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. , 2007, Ecology.

[23]  Jennifer L. Molnar,et al.  Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas , 2007 .

[24]  Bernard Bobée,et al.  A Review of Statistical Water Temperature Models , 2007 .

[25]  James H. Brown,et al.  Kinetic effects of temperature on rates of genetic divergence and speciation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Gillman,et al.  The road from Santa Rosalia: A faster tempo of evolution in tropical climates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Orme,et al.  TESTING FOR LATITUDINAL BIAS IN DIVERSIFICATION RATES: AN EXAMPLE USING NEW WORLD BIRDS , 2005 .

[28]  Richard Field,et al.  Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness , 2004 .

[29]  N. Lazar,et al.  Methods and Criteria for Model Selection , 2004 .

[30]  L. Prieur,et al.  Vertical distributions of zooplankton across the Almeria–Oran frontal zone (Mediterranean Sea) , 2004 .

[31]  Geoffrey B. West,et al.  Effects of Body Size and Temperature on Population Growth , 2004, The American Naturalist.

[32]  Dawn M. Kaufman,et al.  LATITUDINAL GRADIENTS OF BIODIVERSITY:Pattern,Process,Scale,and Synthesis , 2003 .

[33]  R. Lande,et al.  Stochastic Population Dynamics in Ecology and Conservation , 2003 .

[34]  James H. Brown,et al.  Response to Comment on "Global Biodiversity, Biochemical Kinetics, and the Energetic-Equivalence Rule" , 2003, Science.

[35]  J. Bradford-Grieve Colonization of the pelagic realm by calanoid copepods , 2002, Hydrobiologia.

[36]  G. Hays,et al.  Individual variability in diel vertical migration of a marine copepod: Why some individuals remain at depth when others migrate , 2001 .

[37]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[38]  E. Hubareva,et al.  Physiological and behavioral aspects of Calanus euxinus females (Copepoda: Calanoida) during vertical migration across temperature and oxygen gradients , 2000 .

[39]  Landry,et al.  Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). II. Mesozooplankton abundance, biomass, depth distribution and grazing , 2000 .

[40]  Colwell,et al.  The mid-domain effect: geometric constraints on the geography of species richness. , 2000, Trends in ecology & evolution.

[41]  M. Ayres,et al.  Jensen's inequality predicts effects of environmental variation. , 1999, Trends in ecology & evolution.

[42]  S. Dolédec,et al.  The intermediate disturbance hypothesis, refugia, and biodiversity in streams , 1997 .

[43]  Jean-François Guégan,et al.  Global scale patterns of fish species richness in rivers , 1995 .

[44]  U. Sommer An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton , 1995 .

[45]  K. Rohde Latitudinal gradients in species diversity: the search for the primary cause , 1992 .

[46]  M. Huntley Temperature-Dependent Production of Marine Copepods: A Global Synthesis , 1992, The American Naturalist.

[47]  J. Damuth Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy‐use , 1987 .

[48]  M. Landry Seasonal temperature effects and predicting development rates of marine copepod eggs1 , 1975 .

[49]  J. Terborgh On the Notion of Favorableness in Plant Ecology , 1973, The American Naturalist.

[50]  E. Pianka Latitudinal Gradients in Species Diversity: A Review of Concepts , 1966, The American Naturalist.

[51]  P. Moran,et al.  A test for the serial independence of residuals. , 1950, Biometrika.

[52]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[53]  J. Louys,et al.  Ecology Needs a Paleontological Perspective , 2012 .

[54]  T. Clutton‐Brock,et al.  The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals , 2007 .

[55]  rme,et al.  TESTING FOR LATITUDINAL BIAS IN DIVERSIFICATION RATES : AN EXAMPLE USING NEW WORLD BIRDS , 2005 .

[56]  Van M. Savagea Improved approximations to scaling relationships for species , populations , and ecosystems across latitudinal and elevational gradients , 2004 .

[57]  A. Clarke,et al.  The importance of historical processes in global patterns of diversity , 2003 .

[58]  J. Mauchline The biology of calanoid copepods , 1998 .

[59]  T. Kiørboe,et al.  Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods , 1994 .

[60]  Charles B. Miller,et al.  Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during spring , 1993 .