Versatile Analysis of Defects in 3D Solid based on Body Force Method

[1]  Mark Kachanov,et al.  On the problems of crack interactions and crack coalescence , 2013 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  S. Nemat-Nasser,et al.  Elastic fields of interacting inhomogeneities , 1985 .

[4]  M. Aliabadi Boundary Element Formulations in Fracture Mechanics , 1997 .

[5]  K. Volokh Fracture , 2019, Mechanics of Soft Materials.

[6]  G. Irwin Crack-Extension Force for a Part-Through Crack in a Plate , 1962 .

[7]  A. Love,et al.  A treatise on the mathematical theory , 1944 .

[8]  P. P. Ong,et al.  Interaction between a circular inclusion and a symmetrically branched crack , 1998 .

[9]  I. N. Sneddon The distribution of stress in the neighbourhood of a crack in an elastic solid , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Satya N. Atluri,et al.  Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loadings , 1983 .

[11]  Elena Atroshchenko,et al.  Stress intensity factor for a semi-elliptical crack subjected to an arbitrary mode I loading , 2014 .

[12]  Albert S. Kobayashi,et al.  Stress Intensity Factors for Penny-Shaped Cracks: Part 1—Infinite Solid , 1967 .

[13]  H. Nisitani The Two-Dimensional Stress Problem Solved Using an Electric Digital Computer , 1968 .

[14]  Michael H. Santare,et al.  The effect of a rigid elliptical inclusion on a straight crack , 1990, International Journal of Fracture.

[15]  C. Atkinson,et al.  The interaction between a crack and an inclusion , 1972 .

[16]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[17]  Wenfeng Hao,et al.  Study on crack-inclusion interaction using digital gradient sensing method , 2016 .

[18]  G. D. Gupta,et al.  INTERACTION BETWEEN A CIRCULAR INCLUSION AND AN ARBITRARILY ORIENTED CRACK , 1974 .

[19]  M. H. Aliabadi,et al.  THREE-DIMENSIONAL CRACK GROWTH SIMULATION USING BEM , 1994 .

[20]  Andreas Acrivos,et al.  The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions , 1978 .

[21]  Hossein M. Shodja,et al.  Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method , 2003 .

[22]  V. S. Kirilyuk,et al.  Interaction of an Ellipsoidal Inclusion with an Elliptic Crack in an Elastic Material under Triaxial Tension , 2003 .

[23]  Lihong Yang,et al.  Crack–inclusion interaction for mode II crack analyzed by Eshelby equivalent inclusion method , 2004 .

[24]  P. C. Paris,et al.  Stress Analysis of Cracks , 1965 .

[25]  H M Shoja,et al.  ARBITRARILY ORIENTED INTERACTING CRACKS , 2003 .

[26]  HighWire Press Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character , 1896 .

[27]  T. K. Saha,et al.  Interaction between coplanar elliptic cracks—II shear loading , 1999 .

[28]  Y. Benveniste,et al.  On interacting cracks and complex crack configurations in linear elastic media , 1989 .

[29]  Osamu Tamate,et al.  The effect of a circular inclusion on the stresses around a line crack in a sheet under tension , 1968 .

[30]  V. Kushch Interacting cracks and inclusions in a solid by multipole expansion method , 1998 .

[31]  Leon M Keer,et al.  Coplanar circular cracks under shear loading , 1969 .

[32]  Steven L. Crouch,et al.  Prediction of interfacial crack path: a direct boundary integral approach and experimental study , 1994 .

[33]  E. Diegele,et al.  Calculation of stress fields near inclusions by use of the fracture mechanics weight function , 1996 .

[34]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[35]  J. Weaver Three-dimensional crack analysis , 1977 .

[36]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[37]  M. H. Aliabadi,et al.  Crack growth analysis in concrete using boundary element method , 1995 .

[38]  Dai-Heng Chen,et al.  The effect of an elliptical inclusion on a crack , 1997 .

[39]  T. A. Cruse,et al.  Numerical solutions in three dimensional elastostatics , 1969 .

[40]  Zhongmin Xiao,et al.  On the dynamic interaction between a penny-shaped crack and an expanding spherical inclusion in 3-D solid , 2004 .

[41]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[42]  T. K. Saha,et al.  Interaction of a penny-shaped crack with an elliptic crack under shear loading , 2005 .

[43]  Lei Chen,et al.  Extended finite element method coupled with face‐based strain smoothing technique for three‐dimensional fracture problems , 2015 .

[44]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[45]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[46]  Ted Belytschko,et al.  An element-free Galerkin method for three-dimensional fracture mechanics , 1997 .

[47]  A. R. Ingraffea Nodal grafting for crack propagation studies , 1977 .

[48]  M. K. Kassir,et al.  A three-dimensional rectangular crack subjected to shear loading , 1982 .

[49]  Sergey V Shkarayev,et al.  Boundary collocation method for multiple defect interactions in an anisotropic finite region , 1998 .

[50]  Nao-Aki Noda,et al.  Variation of stress intensity factor along the front of a 3D rectangular crack by using a singular integral equation method , 2001 .

[51]  Noriko Katsube,et al.  The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks. , 2013, International journal of solids and structures.

[52]  Jao-Hwa Kuang,et al.  Alternating iteration method for interacting multiple crack problems , 1999 .

[53]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[54]  Hiroshi Noguchi,et al.  A rectangular crack in an infinite solid, a semi-infinite solid and a finite-thickness plate subjected to tension , 1991, International Journal of Fracture.

[55]  Mark Kachanov,et al.  A simple technique of stress analysis in elastic solids with many cracks , 1985, International Journal of Fracture.

[56]  M. K. Kassir,et al.  Three-dimensional crack problems : a new selection of crack solutions in three-dimensional elasticity , 1975 .

[57]  M. Duflot A meshless method with enriched weight functions for three‐dimensional crack propagation , 2006 .

[58]  K. Pae,et al.  The interaction between a penny-shaped crack and a spherical inhomogeneity in an infinite solid under uniaxial tension , 1991 .

[59]  M. Yoda The J-integral fracture toughness for Mode II , 1980 .

[60]  M. Denda,et al.  Complex variable approach to the BEM for multiple crack problems , 1997 .

[61]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[62]  R. D. Bhargava,et al.  Elastic circular inclusion in an infinite plane containing two cracks , 1973 .

[63]  G. Sih Mechanics of fracture initiation and propagation , 1990 .

[64]  Anthony Gravouil,et al.  Three‐dimensional simulation of crack with curved front with direct estimation of stress intensity factors , 2015 .

[65]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[66]  James K. Knowles,et al.  A Note on the Energy Release Rate in Quasi-Static Elastic Crack Propagation , 1981 .

[67]  Tinh Quoc Bui,et al.  Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation , 2017 .

[68]  Y. Z. Chen,et al.  Potentials in plane elasticity by distribution of dislocation doublet or force doublet along a curve , 1998 .

[69]  M. Yukitaka,et al.  Quantitative evaluation of fatigue strength of metals containing various small defects or cracks , 1983 .

[70]  Paul A. Martin ORTHOGONAL POLYNOMIAL SOLUTIONS FOR PRESSURIZED ELLIPTICAL CRACKS , 1986 .

[71]  Zhenjun Yang,et al.  Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method , 2006 .

[72]  Akihide Saimoto,et al.  Evaluation of Accuracy for 2D Elastic–Plastic Analysis by Embedded Force Doublet Model Combined with Automated Delaunay Tessellation , 2015 .

[73]  Shige Zhan,et al.  Interactions of Penny-shaped Cracks in Three-dimensional Solids , 2006 .

[74]  Johan Helsing,et al.  Stress intensity factors for a crack in front of an inclusion , 1999 .

[75]  G. Hildebrand,et al.  RETRACTED ARTICLE: Fracture analysis using an enriched meshless method , 2009 .

[76]  Y. Z. Chen,et al.  INTEGRAL EQUATION METHODS FOR MULTIPLE CRACK PROBLEMS AND RELATED TOPICS , 2007 .

[77]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[78]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[79]  Heinz Antes A Short Course on Boundary Element Methods , 2010 .

[80]  Makoto Isida,et al.  Two parallel elliptical cracks in an infinite solid subjected to tension , 1985 .

[81]  Nao-Aki Noda,et al.  Variation of stress intensity factor and crack opening displacement of semi-elliptical surface crack , 1996 .

[82]  Raju Sethuraman,et al.  Stress intensity factors for circular hole and inclusion using finite element alternating method , 2000 .

[83]  E. P. Chen,et al.  Effect of material nonhomogeneity on crack propagation characteristics , 1980 .

[84]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[85]  Martin Berggren A Brief Introduction to the Finite Element Method , 2013 .

[86]  L. A. Galin,et al.  CONTACT PROBLEMS IN THE THEORY OF ELASTICITY , 1961 .

[87]  Hiroshi Noguchi,et al.  Tension and bending of finite thickness plates with a semi-elliptical surface crack , 1984 .

[88]  Jay R. Lund,et al.  LEONARDO DA VINCI'S TENSILE STRENGTH TESTS: IMPLICATIONS FOR THE DISCOVERY OF ENGINEERING MECHANICS , 2001 .

[89]  Mark S. Shephard,et al.  Automatic crack propagation tracking , 1985 .

[90]  T. Rabczuk,et al.  A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics , 2007 .

[91]  Albert S. Kobayashi,et al.  Approximate stress intensity factor for an embedded elliptical crack near two parallel free surfaces , 1965 .

[92]  Yi-Yuan Yu,et al.  The Effect of Two Rigid Spherical Inclusions on the Stresses in an Infinite Elastic Solid , 1966 .

[93]  M. K. Kassir,et al.  Stress-Intensity Factor for a Three-Dimensional Rectangular Crack , 1981 .

[94]  Y. M. Chen,et al.  Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code) , 1975 .

[95]  Dae-Jin Kim,et al.  Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method , 2012 .

[96]  Abdulnaser M. Alshoaibi,et al.  An Adaptive Finite Element Famework for Fatigue Crack Propagation under Constant Amplitude Loading , 2015 .

[97]  F. Montheillet,et al.  The Interaction of Two Spherical Gas Bubbles in an Infinite Elastic Solid , 2003 .

[98]  S. Nemat-Nasser,et al.  Growth and stability of interacting surface flaws of arbitrary shape , 1983 .

[99]  Masao Kodama,et al.  On the Asymmetric Problem of Elasticity Theory for an Infinite Elastic Solid Containing Some Spherical Cavities : 2nd Report.. An Infinite Solid Containing Three Spherical Cavities , 1976 .

[100]  Mark Bush,et al.  The Interaction between a Crack and a Particle Cluster , 1997 .

[101]  Sia Nemat-Nasser,et al.  Interacting dissimilar semi-elliptical surface flaws under tension and bending , 1982 .

[102]  Albert S. Kobayashi,et al.  Stress intensity factor for an elliptical crack under arbitrary normal loading , 1971 .

[103]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[104]  Hiroshi Miyamoto,et al.  On the Problem of the Theory of Elasticity for a Region Containing more than Two Spherical Cavities , 1958 .

[105]  A. S. Kobayashi,et al.  Stress intensity factors for an elliptical crack approaching the surface of a semi-infinite solid , 1973 .

[106]  S. D. Daxini,et al.  A Review on Recent Contribution of Meshfree Methods to Structure and Fracture Mechanics Applications , 2014, TheScientificWorldJournal.

[107]  Hiroshi Noguchi,et al.  Parallel array of semi-elliptical surface cracks in semi-infinite solid under tension , 1991 .

[108]  Roger Smith,et al.  A finite element model for the shape development of irregular planar cracks , 1989 .

[109]  Satya N. Atluri,et al.  Multiple coplanar embedded elliptical cracks in an infinite solid subject to arbitrary crack face tractions , 1985 .

[110]  John Tweed,et al.  The stress intensity factor for a penny-shaped crack in an elastic body under the action of symmetric body forces , 1967 .

[111]  Dai-Heng Chen,et al.  Body force method , 1997 .

[112]  Y. Murakami,et al.  Stress intensity factors of an elliptical crack or a semi-elliptical crack subject to tension , 1974 .

[113]  M. Kachanov,et al.  Three-dimensional problems of strongly interacting arbitrarily located penny-shaped cracks , 1989 .

[114]  M. Aliabadi,et al.  Dual boundary element method for three-dimensional fracture mechanics analysis , 1992 .

[115]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[116]  Hong Zheng,et al.  New strategies for some issues of numerical manifold method in simulation of crack propagation , 2014 .

[117]  Akihide Saimoto,et al.  Short History of Body Force Method and its Application to Various Problems of Stress Analysis , 2003 .

[118]  Frank Williamson,et al.  Richard courant and the finite element method: A further look , 1980 .

[119]  Nao-Aki Noda,et al.  Variation of the stress intensity factor along the crack front of interacting semi-elliptical surface cracks , 2001 .

[120]  Zhongmin Xiao,et al.  A penny-shaped crack above the pole of a spherical inhomogeneity , 1997 .

[121]  H. Noguchi,et al.  Oblique semi-elliptical surface crack in semi-infinite solid subjected to tension , 1990 .

[122]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[123]  Guido Dhondt,et al.  AUTOMATIC 3-D MODE I CRACK PROPAGATION CALCULATIONS WITH FINITE ELEMENTS , 1998 .

[124]  Mark Kachanov,et al.  Elastic solids with many cracks: A simple method of analysis , 1987 .

[125]  Haeng-Ki Lee,et al.  On stress analysis for a penny-shaped crack interacting with inclusions and voids , 2010 .

[126]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[127]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[128]  Naoshi Nishimura,et al.  A fast multipole boundary integral equation method for crack problems in 3D , 1999 .

[129]  Elena Atroshchenko,et al.  Stress intensity factor for an embedded elliptical crack under arbitrary normal loading , 2009 .

[130]  Mark Kachanov,et al.  Elastic Solids with Many Cracks and Related Problems , 1993 .