Mid-infrared and Raman spectrometry for quality control of pesticide formulations

This article deals with recent developments in the use of vibrational spectrometry for the quantitative analysis of active components in commercial pesticide formulations. We review the techniques, such as Fourier transform infrared (FTIR) and FT-Raman spectrometries, and measurement modes, such as stopped flow or flow injection. FTIR is being used increasingly in the determination of pesticides in agrochemical products because of its relatively short analysis time. However, FT-Raman spectrometry provides direct analysis of solid and aqueous samples. It is therefore clear that these techniques enable fast, non-destructive, precise and accurate measurements, so vibrational spectrometry appears to be a promising tool for on-line process monitoring and analysis in the agrochemical industry.

[1]  S. Garrigues,et al.  Solid sampling Fourier transform infrared determination of Mancozeb in pesticide formulations. , 2005, Talanta.

[2]  Sergio Armenta,et al.  Fourier transform infrared spectrometric determination of Malathion in pesticide formulations , 2004 .

[3]  S. Garrigues,et al.  Flow Injection Analysis–Fourier Transform Infrared Spectrometry (FIA/FT-IR) , 2006 .

[4]  S. Garrigues,et al.  FT-Raman determination of Mepiquat chloride in agrochemical products , 2004 .

[5]  M. Almond,et al.  Quantitative Analysis of Agrochemical Formulations by Multivariate Spectroscopic Techniques , 1999 .

[6]  S. Garrigues,et al.  Flow Injection Fourier Transform Infrared Determination of Caffeine in Soft Drinks , 1997 .

[7]  N. Danielson,et al.  Aqueous Flow Injection Analysis with Fourier Transform Infrared Detection , 1985 .

[8]  S. Skoulika,et al.  FT-Raman spectroscopy - analytical tool for routine analysis of diazinon pesticide formulations. , 2000, Talanta.

[9]  S. K. Handa,et al.  Fourier transform infrared spectroscopic determination of cypermethrin and deltamethrin in emulsifiable concentrate formulations. , 1997, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[10]  M. Guardia,et al.  Quantitative Analysis, Infrared , 2006 .

[11]  Miguel de la Guardia,et al.  FT-Raman spectrometry determination of Malathion in pesticide formulations. , 2004, Talanta.

[12]  Magni Martens,et al.  Multivariate Analysis of Quality : An Introduction , 2001 .

[13]  S. Garrigues,et al.  Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures , 2004 .

[14]  S. Skoulika,et al.  Univariate and Multivariate Calibration for the Quantitative Determination of Methyl-Parathion in Pesticide Formulations by FT-Raman Spectroscopy , 2000 .

[15]  S. Garrigues,et al.  Simultaneous determination of Folpet and Metalaxyl in pesticide formulations by flow injection Fourier transform infrared spectrometry , 2003 .

[16]  S. Skoulika,et al.  Quantitative Determination of Fenthion in Pesticide Formulations by FT-Raman Spectroscopy , 1999 .

[17]  S. Garrigues,et al.  Fourier transform infrared spectrometric determination of Ziram. , 2001, Talanta.

[18]  Sergio Armenta,et al.  Fourier transform infrared spectrometric strategies for the determination of Buprofezin in pesticide formulations , 2002 .

[19]  S. Garrigues,et al.  Vapour generation Fourier transform infrared spectrometry. A new analytical technique , 1995 .

[20]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .