Collaborative Multi-Robot Localization

This paper presents a probabilistic algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The paper also describes experimental results obtained using two mobile robots. The robots detect each other and estimate their relative locations based on computer vision and laser range-finding. The results, obtained in an indoor office environment, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization.

[1]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[2]  Andrew W. Moore,et al.  Efficient Locally Weighted Polynomial Regression Predictions , 1997, ICML.

[3]  Wolfram Burgard,et al.  A Monte Carlo Algorithm for Multi-Robot Localization , 1999 .

[4]  Daphne Koller,et al.  Using Learning for Approximation in Stochastic Processes , 1998, ICML.

[5]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[7]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[8]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[9]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[10]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[11]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[12]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Wolfram Burgard,et al.  The Interactive Museum Tour-Guide Robot , 1998, AAAI/IAAI.

[14]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[15]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  P. S. Maybeck,et al.  The Kalman Filter: An Introduction to Concepts , 1990, Autonomous Robot Vehicles.

[17]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Robotics Auton. Syst..

[18]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[19]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[20]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[21]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[22]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[23]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[24]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[25]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[26]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[27]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[28]  Wolfram Burgard,et al.  The Museum Tour-Guide Robot RHINO , 1988, AMS.

[29]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[30]  Johann Borenstein Control and kinematic design of multi-degree-of freedom mobile robots with compliant linkage , 1995, IEEE Trans. Robotics Autom..

[31]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[32]  Eric P. Fox Bayesian Statistics 3 , 1991 .