Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus

[1]  Deborah W. Gregory The Impact of Culture , 2014 .

[2]  A. Ghosh,et al.  Fighting malaria with engineered symbiotic bacteria from vector mosquitoes , 2012, Proceedings of the National Academy of Sciences.

[3]  L. Bussière,et al.  Midgut bacterial dynamics in Aedes aegypti. , 2012, FEMS microbiology ecology.

[4]  A. Enayati,et al.  dentification of bacterial microflora in the midgut of the larvae and adult of wild aught Anopheles stephensi : A step toward finding suitable paratransgenesis andidates , 2011 .

[5]  G. Favia,et al.  Identification of the Midgut Microbiota of An. stephensi and An. maculipennis for Their Application as a Paratransgenic Tool against Malaria , 2011, PloS one.

[6]  D. Severson,et al.  Culturing and egg collection of Aedes aegypti. , 2010, Cold Spring Harbor protocols.

[7]  M. A. Berbert-Molina,et al.  Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. , 2010, Acta tropica.

[8]  B. Xie,et al.  Composition of Bacterial Communities Associated with a Plant–Parasitic Nematode Bursaphelenchus mucronatus , 2010, Current Microbiology.

[9]  R. Bhatnagar,et al.  Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector , 2009, BMC Microbiology.

[10]  V. Zahner,et al.  Application of 16S rDNA-DGGE and Plate Culture to Characterization of Bacterial Communities Associated with the Sawfly, Acantholyda erythrocephala (Hymenoptera, Pamphiliidae) , 2008, Current Microbiology.

[11]  Zhiyong Xi,et al.  The Aedes aegypti Toll Pathway Controls Dengue Virus Infection , 2008, PLoS pathogens.

[12]  D. Chadee,et al.  Investigations of dengue‐2 susceptibility and body size among Aedes aegypti populations , 2007, Medical and veterinary entomology.

[13]  Y. Liu,et al.  [Microbial diversity in scorpion intestine (Buthus martensii Karsch)]. , 2007, Wei sheng wu xue bao = Acta microbiologica Sinica.

[14]  J. Xie,et al.  Mosquito Heparan Sulfate and Its Potential Role in Malaria Infection and Transmission* , 2007, Journal of Biological Chemistry.

[15]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[16]  L. Kramer,et al.  Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector , 2007, Proceedings of the National Academy of Sciences.

[17]  David Lampe,et al.  Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. , 2007, International journal for parasitology.

[18]  Jay Siddharth,et al.  Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. , 2006, Research in microbiology.

[19]  A. J. Jones,et al.  New Screening Software Shows that Most Recent Large 16S rRNA Gene Clone Libraries Contain Chimeras , 2006, Applied and Environmental Microbiology.

[20]  C. Tsai,et al.  Purification and Characterization , 2006 .

[21]  M. Riehle,et al.  Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. , 2005, Insect biochemistry and molecular biology.

[22]  F. Kafatos,et al.  Mosquito immunity against Plasmodium. , 2005, Insect biochemistry and molecular biology.

[23]  J. Handelsman,et al.  Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness , 2005, Applied and Environmental Microbiology.

[24]  Thomas Huber,et al.  Bellerophon: a program to detect chimeric sequences in multiple sequence alignments , 2004, Bioinform..

[25]  C. Elmerich,et al.  La violacéine : une molécule d'intérêt biologique, issue de la bactérie tellurique Chromobacterium violaceum , 2004 .

[26]  Y. Shouche,et al.  Studies on cultured and uncultured microbiota of wild culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. , 2004, The American journal of tropical medicine and hygiene.

[27]  D. Mummey,et al.  Culture-Independent Analysis of Midgut Microbiota in the Arbovirus Vector Culicoides sonorensis (Diptera: Ceratopogonidae) , 2004, Journal of medical entomology.

[28]  N. Ratcliffe,et al.  microbe–vector interactions in vector-borne diseases: Vector immunity , 2004 .

[29]  D. Faure,et al.  [Violacein: a molecule of biological interest originating from the soil-borne bacterium Chromobacterium violaceum]. , 2004, La Revue de medecine interne.

[30]  D. Severson,et al.  A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti , 2003, Molecular Genetics and Genomics.

[31]  G. Yan,et al.  Dynamics of molecular markers linked to the resistance loci in a mosquito-Plasmodium system. , 2003, Genetics.

[32]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[33]  H. Lortat-Jacob,et al.  Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. , 2002, Virology.

[34]  Neil Hunter,et al.  Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. , 2002, Microbiology.

[35]  A. Mishra,et al.  Study of the effect of the midgut bacterial flora of Culex quinquefasciatus on the susceptibility of mosquitoes to Japanese encephalitis virus. , 2002, Acta virologica.

[36]  Y. Shouche,et al.  Effect of Midgut Bacterial Flora of Aedes aegypti on the Susceptibility of Mosquitoes to Dengue Viruses , 2002 .

[37]  Xiao-Fan Wang,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002 .

[38]  J. Esko,et al.  The Binding of the Circumsporozoite Protein to Cell Surface Heparan Sulfate Proteoglycans Is Required for PlasmodiumSporozoite Attachment to Target Cells* , 2001, The Journal of Biological Chemistry.

[39]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[40]  D. Severson,et al.  Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. , 2001, Genetics.

[41]  S. Welburn,et al.  Tsetse-trypanosome interactions: rites of passage. , 1999, Parasitology today.

[42]  S. Halstead Is there an inapparent dengue explosion? , 1999, The Lancet.

[43]  James R. Cole,et al.  A new version of the RDP (Ribosomal Database Project) , 1999, Nucleic Acids Res..

[44]  Martin F. Polz,et al.  Bias in Template-to-Product Ratios in Multitemplate PCR , 1998, Applied and Environmental Microbiology.

[45]  Philip Hugenholtz,et al.  Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity , 1998, Journal of bacteriology.

[46]  Duane J. Gubler,et al.  Dengue and Dengue Hemorrhagic Fever , 1998, Clinical Microbiology Reviews.

[47]  C. Beard,et al.  The Molecular Biology of Insect Disease Vectors , 1997, Springer Netherlands.

[48]  D. Severson RFLP analysis of insect genomes , 1997 .

[49]  J. Beier,et al.  Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. , 1996, The American journal of tropical medicine and hygiene.

[50]  S. Giovannoni,et al.  Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR , 1996, Applied and environmental microbiology.

[51]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[52]  D. Severson,et al.  Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum. , 1994, The Journal of parasitology.

[53]  J. Beier,et al.  Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum development in anopheline mosquitoes (Diptera: Culicidae). , 1994, Journal of medical entomology.

[54]  M. Pereira,et al.  Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes. , 1994, Molecular and biochemical parasitology.

[55]  J. Esko,et al.  A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans , 1993, The Journal of cell biology.

[56]  J. Nataro,et al.  Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. , 1993, Experimental parasitology.

[57]  R. Linhardt,et al.  Purification and characterization of heparin lyases from Flavobacterium heparinum. , 1992, The Journal of biological chemistry.

[58]  D. Lohse,et al.  Purification and Characterization Heparin Lyases from Flavobacterium heparinurn , 1992 .

[59]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[60]  N. Pace,et al.  Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[61]  B. Yuval,et al.  Mycoses, bacterial infections and antibacterial activity in sandifies (Psychodidae) and their possible role in the transmission of leishmaniasis , 1985, Parasitology.

[62]  Chang Yc Serological diagnosis of haemorrhagic fever and dengue in Singapore. , 1966 .

[63]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .