Structural characterization of particle systems using spherical harmonics

Abstract Many important properties of particulate materials are heavily influenced by the size and shape of the constituent particles. Thus, in order to control and improve product quality, it is important to develop a good understanding of the shape and size of the particles that make up a given particulate material. In this paper, we show how the spherical harmonics expansion can be used to approximate particles obtained from tomographic 3D images. This yields an analytic representation of the particles which can be used to calculate structural characteristics. We present an estimation method for the optimal length of expansion depending on individual particle shapes, based on statistical hypothesis testing. A suitable choice of this parameter leads to a smooth approximation that preserves the main shape features of the original particle. To show the wide applicability of this procedure, we use it to approximate particles obtained from two different tomographic 3D datasets of particulate materials. The first one describes an anode material from lithium-ion cells that consists of sphere-like particles with different sizes. The second dataset describes a powder of highly non-spherical titanium dioxide particles.

[1]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[2]  M. S. Shunmugam,et al.  Evaluation of sphericity error from form data using computational geometric techniques , 2002 .

[3]  Margret Wohlfahrt-Mehrens,et al.  Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries , 2012 .

[4]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[5]  Mario Nicodemi,et al.  Slow relaxation and compaction of granular systems , 2005, Nature materials.

[6]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[7]  Johanna Fasciati-Ziegel,et al.  Estimation of surface area and surface area measure of three-dimensional sets from digitizations , 2010, Image Vis. Comput..

[8]  Anne Marie Svane Estimation of Intrinsic Volumes from Digital Grey-Scale Images , 2013, Journal of Mathematical Imaging and Vision.

[9]  E. Garboczi,et al.  Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics : Application to aggregates used in concrete , 2002 .

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  Eric Forssberg,et al.  Slurry rheology in wet ultrafine grinding of industrial minerals: a review , 2004 .

[12]  S. Beucher Use of watersheds in contour detection , 1979 .

[13]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[14]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  H. Wadell,et al.  Sphericity and Roundness of Rock Particles , 1933, The Journal of Geology.

[16]  Arno Kwade,et al.  Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills , 2002 .

[17]  Anne Marie Svane Local Digital Algorithms for Estimating the Integrated Mean Curvature of r-Regular Sets , 2015, Discret. Comput. Geom..

[18]  J. Banhart,et al.  In situ Synchrotron X‐ray Radiography Investigations of Water Transport in PEM Fuel Cells , 2009 .

[19]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[20]  A. Kupsch,et al.  Quantitative structural assessment of heterogeneous catalysts by electron tomography. , 2011, Journal of the American Chemical Society.

[21]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[22]  J. Bullard,et al.  Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions , 2013 .

[23]  Arno Kwade,et al.  Approach to structural anisotropy in compacted cohesive powder , 2014 .

[24]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[25]  Wolfgang Haselrieder,et al.  Intensive Dry and Wet Mixing Influencing the Structural and Electrochemical Properties of Secondary Lithium-Ion Battery Cathodes , 2013 .

[26]  Ingo Manke,et al.  3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells , 2011 .

[27]  Dominique Jeulin,et al.  Stochastic watershed segmentation , 2007, ISMM.

[28]  Volker Schmidt,et al.  Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes based on structural segmentation of FIB–SEM images , 2013 .

[29]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[30]  J. Calvert,et al.  Glossary of atmospheric chemistry terms (Recommendations 1990) , 1990 .

[31]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[32]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[33]  I. Manke,et al.  3D Visualisation of PEMFC Electrode Structures Using FIB Nanotomography , 2010 .

[34]  J. Kerr Advances in lithium-ion batteries , 2003 .

[35]  J. Banhart,et al.  In Situ Microtomographic Monitoring of Discharging Processes in Alkaline Cells , 2010 .

[36]  V. Schmidt,et al.  Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data , 2011, 1111.5145.

[37]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[38]  Joachim Ohser,et al.  Measuring Intrinsic Volumes in Digital 3d Images , 2006, DGCI.

[39]  Carla Angela Mormino Istituto Italiano Degli Attuari , 2006 .

[40]  R. Beare,et al.  The watershed transform in ITK - discussion and new developments , 2006, The Insight Journal.

[41]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[42]  John Banhart,et al.  Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks , 2012 .

[43]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[45]  H. Wadell,et al.  Volume, Shape, and Roundness of Quartz Particles , 1935, The Journal of Geology.

[46]  Budi Zhao,et al.  Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics , 2015 .

[47]  Jean-Marie Becker,et al.  Shapes and Metrics , 1993, CAIP.

[48]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[49]  G. Arfken Mathematical Methods for Physicists , 1967 .

[50]  Nahum Kiryati,et al.  Calculating geometric properties of three-dimensional objects from the spherical harmonic representation , 2007, Pattern Recognit..

[51]  Stereological Modelling of Random Particles , 2013 .

[52]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .