Optical Interconnects for Green Computers and Data Centers

Abstract In this chapter, state-of-the-art optical interconnect technologies for supercomputers and data centers (DCs) are presented with optical devices and CMOS circuits, which are going to be fundamental building blocks of computer networks. Performance of leading edge systems is approaching exascale; however, we are forced to confront the energy problem not only in terms of performance improvement limited by thermal burnout but also by increasing energy consumption, especially in DCs. In this situation, optical signal to electronic signal (O/E) and electrical signal to optical signal (E/O) conversion devices should be placed adjacent to or inside a processor chip or memory chip, and optical devices fully integrated with CMOS circuits will be a key technology. The discussion includes what optical interconnects are and the requirements for their components, the board-to-board optical interconnect technology, and the Silicon photonics as a newly-state-of-the-art component technology to achieve future on-board optical transmission. The chapter is concluded with a roadmap of optical interconnects technology for exascale computing.

[1]  Yi-Jen Chiu,et al.  High-speed and high-power performances of LTG-GaAs based metal-semiconductor-metal traveling-wave-photodetectors in 1.3-/spl mu/m wavelength regime , 2002, IEEE Photonics Technology Letters.

[2]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[3]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[4]  Bahaa E. A. Saleh,et al.  Fundamentals of Photonics, Second Edition , 2008 .

[5]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[6]  Sung Min Park,et al.  Low-crosstalk 10-Gb/s flip-chip array module for parallel optical interconnects , 2005 .

[7]  Michael A. Sorna,et al.  A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization , 2005, IEEE Journal of Solid-State Circuits.

[8]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[9]  M. E. Austin,et al.  Decision-feedback equalization for digital communication over dispersive channels. , 1967 .

[10]  Joohwa Kim,et al.  A 40-Gb/s Optical Transceiver Front-End in 45 nm SOI CMOS , 2012, IEEE Journal of Solid-State Circuits.

[11]  M. Saruwatari,et al.  A new confocal combination lens method for a laser-diode module using a single-mode fiber , 1985, Journal of Lightwave Technology.

[12]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[13]  K. Adachi,et al.  25-Gb/s Multichannel 1.3- $\mu$m Surface-Emitting Lens-Integrated DFB Laser Arrays , 2011, Journal of Lightwave Technology.

[14]  Dan Song,et al.  A Fully Integrated 4 $\times$ 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[15]  Po Dong,et al.  High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. , 2012, Optics express.

[16]  Mark Anderson The End of Gold Farming? [Geek Life] , 2010, IEEE Spectrum.

[17]  Hoi-Jun Yoo,et al.  1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications , 2004 .

[18]  Shinji Nishimura,et al.  10:4 MUX and 4:10 DEMUX gearbox LSI for 100-gigabit Ethernet link , 2011, 2011 IEEE International Solid-State Circuits Conference.

[19]  Kazutoshi Kato,et al.  Design of Ultrawide-Band, High-Sensitivity p-i-n Protodetectors , 1993 .

[20]  Shen-Iuan Liu,et al.  40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[21]  Toshihiko Baba,et al.  10 Gb/s operation of photonic crystal silicon optical modulators. , 2011, Optics express.

[22]  F. K. Becker,et al.  Automatic equalization for digital communication , 1965 .

[23]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[24]  T. Lee,et al.  A 0.3-/spl mu/m CMOS 8-Gb/s 4-PAM serial link transceiver , 2000, 1999 Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326).

[25]  Jun Ushioda,et al.  A 400Gbps backplane switch with 10Gbps/port optical I/O interfaces based on OIP (optical interconnection as IP of a CMOS library) , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[26]  Hui-Wen Chen,et al.  High speed hybrid silicon evanescent Mach-Zehnder modulator and switch. , 2008, Optics express.

[27]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[28]  A. Wang,et al.  Through the Looking Glass: Trend Tracking for ISSCC 2012 , 2012, IEEE Solid-State Circuits Magazine.

[29]  Koichiro Adachi,et al.  A 35-GHz, 0.8-A/W and 26-µm Misalignment Tolerance Microlens-Integrated p-i-n Photodiodes , 2011, IEICE Trans. Electron..

[30]  Shinji Nishimura,et al.  100-Gbps CMOS transceiver for multilane optical backplane system with 1.3-cm2 footprint , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[31]  W.J. Dally,et al.  Transmitter equalization for 4-Gbps signaling , 1997, IEEE Micro.

[32]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[33]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[34]  Shinji Nishimura,et al.  A 25-Gb/s 2.2-W optical transceiver using an analog FE tolerant to power supply noise and redundant data format conversion in 65-nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[35]  W. Hofmann,et al.  980-nm VCSELs for optical interconnects at 25 Gb/s up to 120°C and 12.5 Gb/s up to 155°C , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[36]  Mark Anderson Optical lasers in a $100 cable. Really , 2010 .

[37]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[38]  A. Krishnamoorthy,et al.  High speed silicon microring modulator based on carrier depletion , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[39]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[40]  A. Kasukawa,et al.  Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs for “Green” Optical Interconnection , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  Koichiro Adachi,et al.  Wide Temperature Range Operation of 25-Gb/s 1.3-μm InGaAlAs Directly Modulated Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[43]  Fuwan Gan,et al.  Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators. , 2008, Optics express.

[44]  Satoshi Matsuoka Making TSUBAME2.0, the world's greenest production supercomputer, even greener — Challenges to the architects , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[45]  Michael M. Green,et al.  An 80mW 40Gb/s 7-Tap T/2-Spaced FFE in 65nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[46]  Kazumi Wada,et al.  Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates , 2000 .

[47]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[48]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[49]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[50]  Po Dong,et al.  High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides. , 2010, Optics express.

[51]  Shinji Nishimura,et al.  A 25-Gb/s, 2.8-mW/Gb/s low power CMOS optical receiver for 100-Gb/s Ethernet solution , 2009, 2009 35th European Conference on Optical Communication.

[52]  Benjamin G Lee,et al.  Low-power CMOS-driven transmitters and receivers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[53]  G. Masini,et al.  High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process , 2008 .

[54]  C. L. Schow,et al.  Ultra low power 10- to 25-Gb/s CMOS-driven VCSEL links , 2012, OFC/NFOEC.

[55]  Ling Liao,et al.  Silicon Optical Modulator for High-speed Applications , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[56]  S.. Gondi,et al.  Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers , 2007, IEEE Journal of Solid-State Circuits.

[57]  Jeffrey A. Kash,et al.  Optical interconnects for high performance computing , 2012, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[58]  Gerrit Fiol,et al.  Multimode optical fibre communication at 25 Gbit/s over 300 m with small spectral-width 850 nm VCSELS , 2011 .

[59]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[60]  M. Watts,et al.  Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Shen-Iuan Liu,et al.  A 6Gb/s receiver with 32.7dB adaptive DFE-IIR equalization , 2011, 2011 IEEE International Solid-State Circuits Conference.

[62]  Jared Zerbe,et al.  A 7.5Gb/s 10-Tap DFE Receiver with First Tap Partial Response, Spectrally Gated Adaptation, and 2nd-Order Data-Filtered CDR , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[63]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[64]  P. Westbergh,et al.  Impact of Photon Lifetime on High-Speed VCSEL Performance , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[65]  J. C. Rosenberg,et al.  Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[66]  Keiichi Yamamoto,et al.  An 8Gb/s Transceiver with 3×-Oversampling 2-Threshold Eye-Tracking CDR Circuit for -36.8dB-loss Backplane , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[67]  T Takemoto,et al.  A Compact 4$\, \times \,$25-Gb/s 3.0 mW/Gb/s CMOS-Based Optical Receiver for Board-to-Board Interconnects , 2010, Journal of Lightwave Technology.

[68]  A. Yariv Critical coupling and its control in optical waveguide-ring resonator systems , 2002, IEEE Photonics Technology Letters.

[69]  Osamu Wada,et al.  Small-junction-area GaInAs/InP pin photodiode with monolithic microlens , 1988 .

[70]  H. Ito,et al.  High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  E. Alon,et al.  Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver. , 2011, Optics express.

[72]  Alexander V. Rylyakov,et al.  25Gb/s 3.6pJ/b and 15Gb/s 1.37pJ/b VCSEL-based optical links in 90nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[73]  L. Schares,et al.  160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers , 2009, IEEE Transactions on Advanced Packaging.

[74]  P. Moser,et al.  Modulation Characteristics of High-Speed and High-Temperature Stable 980 nm Range VCSELs Operating Error Free at 25 Gbit/s up to 85 °C , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  Goichi Ono,et al.  A 12.3-mW 12.5-Gb/s Complete Transceiver in 65-nm CMOS Process , 2010, IEEE Journal of Solid-State Circuits.

[76]  Elia Palange,et al.  Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si , 1998 .

[77]  Jun Ushida,et al.  25 GHz operation of silicon optical modulator with projection MOS structure , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[78]  Yu-Chia Chang,et al.  Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  M. Berroth,et al.  Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz , 2009, IEEE Photonics Technology Letters.

[80]  Behzad Razavi Design of intergrated circuits for optical communications , 2002 .

[81]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[82]  Friedhelm Hopfer,et al.  32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL , 2009 .

[83]  Naoki Fujiwara,et al.  40-Gbps direct modulation of 1.3-µm InGaAlAs DFB laser in compact TO-CAN package , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[84]  Hideaki Okayama,et al.  12.5-Gb/s operation with 0.29-V·cm V(π)L using silicon Mach-Zehnder modulator based-on forward-biased pin diode. , 2012, Optics express.