Adaptive Nonlinear Equalizer Using a Mixture of Gaussian-Based Online Density Estimator

This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus cochannel interference (CCI). Our proposed algorithm is referred to as the online mixture of Gaussian-estimator-aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussian-based probability density function (pdf) estimator is used to model the pdf of the decision variable, for which a novel online pdf update algorithm is derived to track the incoming data. With the aid of this novel online mixture of Gaussian-based sample-by-sample updated pdf estimator, our adaptive nonlinear equalizer is capable of updating its equalizer's parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer's achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing online nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study.

[1]  Sheng Chen,et al.  Adaptive Bayesian equalizer with decision feedback , 1993, IEEE Trans. Signal Process..

[2]  Sheng Chen,et al.  A clustering technique for digital communications channel equalization using radial basis function networks , 1993, IEEE Trans. Neural Networks.

[3]  Sheng Chen,et al.  Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  C.F.N. Cowan,et al.  The application of nonlinear structures to the reconstruction of binary signals , 1991, IEEE Trans. Signal Process..

[5]  Sheng Chen,et al.  Regression based D-optimality experimental design for sparse kernel density estimation , 2010, Neurocomputing.

[6]  Charalampos Tsimenidis,et al.  Adaptive minimum bit error rate multiuser detection for asynchronous MC-CDMA systems frequency selective Rayleigh fading channels , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[7]  G. J. Gibson,et al.  Space translation properties and the minimum-BER linear-combiner DFE , 1998 .

[8]  G. J. Gibson,et al.  Adaptive channel equaliza-tion using a polynomial-perceptron structure , 1990 .

[9]  S. Qureshi,et al.  Adaptive equalization , 1982, Proceedings of the IEEE.

[10]  Sheng Chen,et al.  Particle Swarm Optimization Aided Orthogonal Forward Regression for Unified Data Modeling , 2010, IEEE Transactions on Evolutionary Computation.

[11]  William H. Tranter,et al.  Minimum BER adaptive filtering , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[12]  Sheng Chen,et al.  A Forward-Constrained Regression Algorithm for Sparse Kernel Density Estimation , 2008, IEEE Transactions on Neural Networks.

[13]  Sheng Chen,et al.  Reconstruction of binary signals using an adaptive radial-basis-function equalizer , 1991, Signal Process..

[14]  Sheng Chen,et al.  An orthogonal forward regression technique for sparse kernel density estimation , 2008, Neurocomputing.

[15]  Andreas Antoniou,et al.  Constrained minimum-BER multiuser detection , 2000, IEEE Trans. Signal Process..

[16]  Sheng Chen,et al.  Adaptive minimum bit-error-rate filtering , 2004 .

[17]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[18]  Bing Lam Luk,et al.  Construction of Tunable Radial Basis Function Networks Using Orthogonal Forward Selection , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Chris J. Harris,et al.  Decision feedback equaliser design using support vector machines , 2000 .

[20]  Lajos Hanzo,et al.  Minimum bit-error rate design for space-time equalization-based multiuser detection , 2006, IEEE Transactions on Communications.

[21]  János Levendovszky,et al.  Approximate Minimum Bit Error Rate Equalization for Fading Channels , 2010, EURASIP J. Adv. Signal Process..

[22]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[23]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[24]  Sheng Chen,et al.  Bayesian decision feedback equaliser for overcoming co-channel interference , 1996 .

[25]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[26]  Rodney A. Kennedy,et al.  Block decision feedback equalization , 1992, IEEE Trans. Commun..

[27]  Lajos Hanzo,et al.  Adaptive minimum bit error rate beamforming assisted receiver for wireless communications , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[28]  P. Deb Finite Mixture Models , 2008 .

[29]  John R. Barry,et al.  Adaptive minimum bit-error rate equalization for binary signaling , 2000, IEEE Trans. Commun..

[30]  John R. Barry,et al.  Approximate minimum bit-error rate multiuser detection , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[31]  M. Y. Alias,et al.  Multiple antenna aided OFDM employing minimum bit error rate multiuser detection , 2003 .

[32]  S. Siu,et al.  Decision feedback equalisation using neural network structures and performance comparison with standard architecture , 1990 .

[33]  Sheng Chen,et al.  Adaptive minimum-BER decision feedback equalisers for binary signalling , 2001, Signal Process..

[34]  Bernie Mulgrew,et al.  Minimum-BER linear-combiner DFE , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[35]  Dimitris A. Pados,et al.  On adaptive minimum probability of error linear filter receivers for DS-CDMA channels , 1999, IEEE Trans. Commun..

[36]  David Gesbert,et al.  Robust linear MIMO receivers: a minimum error-rate approach , 2003, IEEE Trans. Signal Process..

[37]  Saleem A. Kassam,et al.  Channel Equalization Using Adaptive Complex Radial Basis Function Networks , 1995, IEEE J. Sel. Areas Commun..

[38]  Sheng Chen,et al.  Minimum-SER linear-combiner decision feedback equaliser , 1999 .

[39]  Jan W. M. Bergmans,et al.  Near-Minimum Bit-Error Rate Equalizer Adaptation for PRML Systems , 2007, IEEE Transactions on Communications.

[40]  R. Sampaio-Neto,et al.  Adaptive MBER decision feedback multiuser receivers in frequency selective fading channels , 2003, IEEE Communications Letters.

[41]  Gang Wei,et al.  A new constrained minimum-BER multiuser detection algorithm , 2004, Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710).

[42]  B. Mulgrew,et al.  Stochastic gradient minimum-BER decision feedback equalisers , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[43]  Lajos Hanzo,et al.  Adaptive minimum bit-error rate beamforming , 2005, IEEE Transactions on Wireless Communications.

[44]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[45]  Lajos Hanzo,et al.  Least Bit Error Rate Adaptive Nonlinear Equalizers for Binary Signalling , 2003 .