In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes

Viscoelastic properties of battery electrodes in contact with electrolyte solutions may affect the electrodes’ cycling performance. However, they are not easily assessed by in situ measurements. Herein, we show that an electrochemical quartz-crystal microbalance with dissipation (EQCM-D) enables extraordinary sensitive probing of intrinsic electrodes materials’ properties such as intercalation-induced gravimetric and viscoelastic changes, using Ti3C2(OH)2 (MXene) as a classical 2D intercalation model material. The insertion of each Li-ion into thin electrodes comprising this MXene is accompanied by insertion of one water molecule. Solvent-dependent viscoelastic changes and periodic stiffening/softening upon fully reversible Li-ion intercalation/deintercalation into an MXene electrode correlates well with its excellent long-term cycling performance. The experimental platform based on a commercial instrument, EQCM-D monitoring, and advanced viscoelastic modeling (extended Voight-type model) can be used for ...

[1]  Chang E. Ren,et al.  Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[2]  Andreas Bund,et al.  Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of dodecylsulfate and polysulfonic anions—An acoustic impedance study , 2014 .

[3]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[4]  Alar Jänes,et al.  In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes. , 2016, Nature materials.

[5]  Volker Presser,et al.  Quartz Crystal Microbalance with Dissipation Monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review , 2016 .

[6]  Yousung Jung,et al.  Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes , 2015 .

[7]  I. Efimov,et al.  An acoustic impedance study of PEDOT layers obtained in aqueous solution , 2016 .

[8]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[9]  L. Trahey,et al.  Interfacial Studies of Li-Ion Battery Cathodes Using In Situ Electrochemical Quartz Microbalance with Dissipation , 2014 .

[10]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[11]  Doron Aurbach,et al.  New Horizons for Conventional Lithium Ion Battery Technology. , 2014, The journal of physical chemistry letters.

[12]  Y. Gogotsi,et al.  Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. , 2014, Angewandte Chemie.

[13]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[14]  I. Efimov,et al.  An electrochemical quartz crystal microbalance study on adsorption of single walled carbon nanotubes onto poly[3,4-ethylenedioxythiophene] layers , 2015, Journal of Solid State Electrochemistry.

[15]  Amartya Mukhopadhyay,et al.  Thin film graphite electrodes with low stress generation during Li-intercalation , 2011 .

[16]  Adriana Ispas,et al.  Taking into account of surface roughness for the calculation of elastic moduli of polymer films from acoustic impedance data , 2014 .

[17]  Y. Gogotsi,et al.  Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide , 2016 .

[18]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[19]  Y. Gogotsi,et al.  Ion-Exchange and Cation Solvation Reactions in Ti 3 C 2 MXene , 2016 .

[20]  D. Aurbach,et al.  In Situ Tracking of Ion Insertion in Iron Phosphate Olivine Electrodes via Electrochemical Quartz Crystal Admittance , 2013 .

[21]  E. Riedo,et al.  Room-temperature metastability of multilayer graphene oxide films. , 2012, Nature materials.

[22]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[23]  M. V. Voinova,et al.  Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach , 1998, cond-mat/9805266.

[24]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[25]  I. Efimov,et al.  In situ analysis of surface morphology and viscoelastic effects during deposition of thin silicon layers from 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide , 2016 .

[26]  A. V. van Duin,et al.  Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces. , 2016, ACS applied materials & interfaces.

[27]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[28]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[29]  Antonio Arnau,et al.  A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids , 2008, Sensors.

[30]  Matthew C. Dixon,et al.  Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D. , 2015, ACS applied materials & interfaces.

[31]  Atsuo Yamada,et al.  Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors , 2015, Nature Communications.

[32]  L. Trahey,et al.  Interfacial study of the role of SiO 2 on Si anodes using electrochemical quartz crystal microbalance , 2015 .

[33]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[34]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[35]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[36]  Hee‐Tae Jung,et al.  High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries , 2015 .

[37]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[38]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[39]  I. Efimov,et al.  On the p-doping of PEDOT layers in various ionic liquids studied by EQCM and acoustic impedance , 2009 .

[40]  M. Urbakh,et al.  Effect of Surface Film Structure on the Quartz Crystal Microbalance Response in Liquids , 1996 .

[41]  D. Aurbach,et al.  Quartz crystal impedance response of nonhomogenous composite electrodes in contact with liquids. , 2011, Analytical chemistry.

[42]  L. Trahey,et al.  Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes. , 2015, ACS applied materials & interfaces.

[43]  Majid Beidaghi,et al.  Controlling the actuation properties of MXene paper electrodes upon cation intercalation , 2015 .

[44]  J. Gordon,et al.  The oscillation frequency of a quartz resonator in contact with liquid , 1985 .

[45]  C. Debiemme-Chouvy,et al.  New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO2 Monitored by Fast Quartz Crystal Microbalance Methods , 2014 .

[46]  Y. Gogotsi,et al.  Ion-Exchange and Cation Solvation Reactions in Ti3C2 MXene , 2016 .

[47]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[48]  Sergei V. Kalinin,et al.  Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes , 2016 .

[49]  D. Aurbach,et al.  In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review , 2017 .