Fusion or Fission: The Destiny of Mitochondria In Traumatic Brain Injury of Different Severities

[1]  A. Gorgey,et al.  Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury , 2017, Physiological reports.

[2]  S. Kannurpatti Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  A. Russell,et al.  Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients , 2017, Human molecular genetics.

[4]  A. Belli,et al.  Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids , 2016, Journal of cellular and molecular medicine.

[5]  T. Sanderson,et al.  Mitochondrial dynamics following global cerebral ischemia , 2016, Molecular and Cellular Neuroscience.

[6]  A. Voigt,et al.  The mitochondrial kinase PINK1: functions beyond mitophagy , 2016, Journal of neurochemistry.

[7]  M. Berry,et al.  Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. , 2016, Cytotherapy.

[8]  A. Belli,et al.  Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury. , 2016, Biochimica et biophysica acta.

[9]  Jacob S. Young,et al.  Sports-related concussions: diagnosis, complications, and current management strategies. , 2016, Neurosurgical focus.

[10]  M. Waxham,et al.  Altered Mitochondrial Dynamics and TBI Pathophysiology , 2016, Front. Syst. Neurosci..

[11]  Shuixiu Xia,et al.  Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury , 2016, Brain Research.

[12]  J. Albrecht,et al.  Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders , 2015, Neurochemistry International.

[13]  L. Scorrano,et al.  The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage , 2015, Cell metabolism.

[14]  I. Bohovych,et al.  Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. , 2015, Antioxidants & redox signaling.

[15]  Sung-Cheng Huang,et al.  In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Yen,et al.  Changes in Mitochondrial Morphology and Bioenergetics in Human Lymphoblastoid Cells With Four Novel OPA1 Mutations. , 2015, Investigative ophthalmology & visual science.

[17]  T. Schwarz,et al.  PINK1- and PARK2-mediated local mitophagy in distal neuronal axons , 2015, Autophagy.

[18]  X. Zhuang,et al.  Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo , 2014, Nature Communications.

[19]  Zhihui Feng,et al.  Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate , 2014, Cell Death and Disease.

[20]  Xiaodong Wang,et al.  Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis , 2014, Proceedings of the National Academy of Sciences.

[21]  D. Hovda,et al.  The New Neurometabolic Cascade of Concussion. , 2014, Neurosurgery.

[22]  A. Luft,et al.  3-Nitropropionic Acid-Induced Ischemia Tolerance in the Rat Brain is Mediated by Reduced Metabolic Activity and Cerebral Blood Flow , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  Bennet Omalu,et al.  Chronic Traumatic Encephalopathy , 2019, Traumatic Brain Injury.

[24]  B. Zhivotovsky,et al.  Free radicals in cross talk between autophagy and apoptosis. , 2014, Antioxidants & redox signaling.

[25]  Q. Dong,et al.  Amelioration of Ischemic Mitochondrial Injury and Bax‐Dependent Outer Membrane Permeabilization by Mdivi‐1 , 2014, CNS neuroscience & therapeutics.

[26]  Prashant Mishra,et al.  Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. , 2014, Cell metabolism.

[27]  A. Belli,et al.  Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. , 2014, Free radical biology & medicine.

[28]  A. Logan,et al.  The Molecular Mechanisms Affecting N-Acetylaspartate Homeostasis Following Experimental Graded Traumatic Brain Injury , 2014, Molecular medicine.

[29]  P. Chinnery,et al.  Mitochondrial DNA and traumatic brain injury , 2014, Annals of neurology.

[30]  M. Alavi,et al.  Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics , 2013, Molecular Neurodegeneration.

[31]  Alexander M van der Bliek,et al.  Mechanisms of mitochondrial fission and fusion. , 2013, Cold Spring Harbor perspectives in biology.

[32]  L. Martins,et al.  Insights into mitochondrial quality control pathways and Parkinson’s disease , 2013, Journal of Molecular Medicine.

[33]  D. Chan,et al.  Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission , 2013, Molecular biology of the cell.

[34]  D. Hovda,et al.  Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury , 2013, Molecular and Cellular Biochemistry.

[35]  L. Scorrano,et al.  The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock☆ , 2012, Biochimica et biophysica acta.

[36]  G. Cheng,et al.  Mitochondria in traumatic brain injury and mitochondrial‐targeted multipotential therapeutic strategies , 2012, British journal of pharmacology.

[37]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[38]  L. Scorrano,et al.  Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency , 2012, Cell Death and Differentiation.

[39]  Christian Haass,et al.  Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences , 2012, The EMBO journal.

[40]  E. Rugarli,et al.  Mitochondrial quality control: a matter of life and death for neurons , 2012, The EMBO journal.

[41]  N. Plesnila,et al.  Inhibition of Drp1 provides neuroprotection in vitro and in vivo , 2012, Cell Death and Differentiation.

[42]  David S. Park,et al.  The Mitochondrial Inner Membrane GTPase, Optic Atrophy 1 (Opa1), Restores Mitochondrial Morphology and Promotes Neuronal Survival following Excitotoxicity* , 2010, The Journal of Biological Chemistry.

[43]  G. Lazzarino,et al.  Biochemical and neurochemical sequelae following mild traumatic brain injury: summary of experimental data and clinical implications. , 2010, Neurosurgical focus.

[44]  Antonio Belli,et al.  Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. , 2010, Journal of neurotrauma.

[45]  E. Rugarli,et al.  Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1 , 2009, The Journal of cell biology.

[46]  J. McCaffery,et al.  Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. , 2009, Molecular biology of the cell.

[47]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[48]  D. Turnbull,et al.  Review: Mitochondria and disease progression in multiple sclerosis , 2008, Neuropathology and applied neurobiology.

[49]  T. Kuwana,et al.  Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. , 2008, Developmental cell.

[50]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[51]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[52]  Antonio Belli,et al.  TEMPORAL WINDOW OF METABOLIC BRAIN VULNERABILITY TO CONCUSSIONS: MITOCHONDRIAL‐RELATED IMPAIRMENT—PART I , 2007, Neurosurgery.

[53]  L. Scorrano,et al.  A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis , 2007, Cell Death and Differentiation.

[54]  S. Duvezin-Caubet,et al.  Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology* , 2006, Journal of Biological Chemistry.

[55]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[56]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[57]  R. Youle,et al.  Mitochondrial fission in apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[58]  A. Marmarou,et al.  Cerebral Oxidative Stress and Depression of Energy Metabolism Correlate with Severity of Diffuse Brain Injury in Rats , 2005, Neurosurgery.

[59]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[60]  B. Lorenz,et al.  Mutation spectrum and splicing variants in the OPA1 gene , 2001, Human Genetics.

[61]  D. Hovda,et al.  The Neurometabolic Cascade of Concussion. , 2001, Journal of athletic training.

[62]  A. Marmarou,et al.  A new model of diffuse brain injury in rats. Part II: Morphological characterization. , 1994, Journal of neurosurgery.

[63]  A. Marmarou,et al.  A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. , 1994, Journal of neurosurgery.

[64]  K. Guskiewicz,et al.  Acute sports-related traumatic brain injury and repetitive concussion. , 2015, Handbook of clinical neurology.

[65]  G. Lazzarino,et al.  The Relevance of Assessing Cerebral Metabolic Recovery for a Safe Return to Play Following Concussion , 2014 .

[66]  J. Gal,et al.  Mitochondrial dysfunction in amyotrophic lateral sclerosis. , 2010, Biochimica et biophysica acta.

[67]  George Perry,et al.  Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. , 2010, Biochimica et biophysica acta.