An astronomical time scale for the Maastrichtian based on the Zumaia and Sopelana sections (Basque country, northern Spain)

The rhythmically bedded limestone–marl alternations in the coastal cliffs of Sopelana and Zumaia in the Basque country, northern Spain, permit testing and refining of existing Maastrichtian chronologies (latest Cretaceous). The recently established astronomical time scale for the late Maastrichtian at Zumaia is extended into C31n with the integrated stratigraphy of the Sopelana section. The cyclic alternations of hemipelagic limestones and marls at Sopelana show a strong influence of eccentricity-modulated precession. Together, the Zumaia and Sopelana sections span almost the entire Maastrichtian, and encompass thirteen 405 kyr cycles spanning a total duration of 5.3 myr. From the Cretaceous–Paleogene (K–Pg) boundary downwards, 405 kyr minima in the lithological, magnetic susceptibility and reflectance data records are tuned to successive 405 kyr minima in the new La2011 eccentricity solution. Assuming a K–Pg boundary age of 65.97 Ma, we present orbitally tuned ages of biostratigraphic and magnetostratigraphic events. Whereas the bases of Chrons C29r and C30n were reliably established at Zumaia and are in good agreement with previous studies, new data from Sopelana provide a refinement of the basal age of Chron C31r. Additional planktonic foraminifera and calcareous nannoplankton data from Zumaia, and new calcareous nannoplankton data from Sopelana, allow for worldwide correlation of the cyclostratigraphy of the Basque country. Supplementary materials: A geological map and additional data are available at www.geolsoc.org.uk/SUP18696.

[1]  P. Ward Maastricthtian ammonite and inoceramid ranges from Bay of Biscay Cretaceous-Tertiary boundary sections , 2022, Spanish Journal of Palaeontology.

[2]  P. Rat The Basque-Cantabrian basin between The Iberian and European plates some facts but still many problems / P. Rat. , 2015 .

[3]  J. Dinarès‐Turell,et al.  Detailed correlation and astronomical forcing within the Upper Maastrichtian succession in the Basque Basin , 2013 .

[4]  D. Watkins,et al.  Biogeography of Campanian‐Maastrichtian Calcareous Plankton in the Region of the Southern Ocean: Paleogeographic and Paleoclimatic Implications , 2013 .

[5]  J. Elorza,et al.  Proximate environmental forcing in fine-scale geochemical records of calcareous couplets (Upper Cretaceous and Palaeocene of the Basque-Cantabrian Basin, eastern North Atlantic) , 2013 .

[6]  P. Renne,et al.  Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary , 2013, Science.

[7]  J. Laskar,et al.  Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain) , 2012 .

[8]  J. Larrasoaña,et al.  Planktonic foraminiferal and calcareous nannofossil biostratigraphy and magnetostratigraphy of the uppermost Campanian and Maastrichtian at Zumaia, northern Spain , 2012 .

[9]  F. Minoletti,et al.  Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C): Implication for the age of the Campanian–Maastrichtian boundary , 2012 .

[10]  J. Laskar,et al.  Time scale controversy: Accurate orbital calibration of the early Paleogene , 2012 .

[11]  A. Gale,et al.  Global correlation of Upper Campanian- Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale , 2012 .

[12]  I. P. Silva,et al.  Bio-magnetochronology for the upper Campanian – Maastrichtian from the Gubbio area, Italy: new results from the Contessa Highway and Bottaccione sections , 2012 .

[13]  E. Sheldon,et al.  Upper Campanian–Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: Towards a standard δ13C curve for the Boreal Realm , 2012 .

[14]  M. Storey,et al.  A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine , 2011 .

[15]  A. Fienga,et al.  The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011, 1108.5546.

[16]  J. Laskar,et al.  Astronomical calibration of the Maastrichtian (Late Cretaceous) , 2011 .

[17]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[18]  L. Lourens,et al.  Evaluation of the astronomical time scale for the Paleocene and earliest Eocene , 2010 .

[19]  S. Gardin,et al.  Latitudinal migration of calcareous nannofossil Micula murus in the Maastrichtian: implications for global climate change , 2010 .

[20]  L. Alegret,et al.  The Global Boundary Stratotype Section and Point for the Base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic): Auxiliary Sections and Correlation , 2009 .

[21]  M. Loutre,et al.  Astronomical Forcing through Geological Time , 2009 .

[22]  J. J. Gómez-Alday,et al.  87Sr/86Sr ratios in inoceramids (Bivalvia) and carbonate matrix as indicators of differential diagenesis during burial. Early Maastrichtian Bay of Biscay sections (Spain and France). Potential use for chemostratigraphy? , 2008 .

[23]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[24]  U. Röhl,et al.  Astronomical calibration of the Paleocene time , 2008 .

[25]  S. Gardin,et al.  The late Maastrichtian nannofossil record of climate change in the South Atlantic DSDP Hole 525A , 2007 .

[26]  G. López,et al.  Evidence of climatic cooling at the Early/Late Maastrichtian boundary from inoceramid distribution and isotopes: Sopelana sections, Basque Country, Spain , 2004 .

[27]  S. Lorito,et al.  Untangling the Palaeocene climatic rhythm: an astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain) ☆ , 2003 .

[28]  G. Odin,et al.  Inoceramids from the Upper Campanian and Lower Maastrichtian of the Tercis section (SW France), the Global Stratotype Section and Point for the Campanian – Maastrichtian boundary; taxonomy, biostratigraphy and correlation potential , 2003 .

[29]  Mitchell J Malone,et al.  Proceedings of the Ocean Drilling Program, 198 Initial Reports , 2002 .

[30]  Michael Schulz,et al.  REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series , 2002 .

[31]  T. Herbert Toward a composite orbital chronology for the Late Cretaceous and Early Palaeocene GPTS , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  J. Elorza,et al.  Palaeoenvironmental implications and diagenesis of inoceramid shells (Bivalvia) in the mid-Maastrichtian beds of the Sopelana, Zumaya and Bidart sections (coast of the Bay of Biscay, Basque Country) , 1998 .

[33]  G. Keller,et al.  Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21 , 1998 .

[34]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[35]  I. P. Silva,et al.  Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section, Gubbio, Italy , 1995 .

[36]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[37]  K. Macleod,et al.  Extinction of inoceramid bivalves in Maastrichtian strata of the Bay of Biscay region of France and Spain , 1994, Journal of Paleontology.

[38]  M. Moreau,et al.  Mechanisms of remanent magnetization acquisition in marl and limestone alternations. Case study: Upper Cretaceous (Chron 31–30), Sopelana, Basque Country , 1994 .

[39]  P. Ward,et al.  Maastrichtian Ammonites from the Biscay Region (France, Spain) , 1993, Journal of Paleontology.

[40]  A. Sprenger,et al.  Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain)☆ , 1993 .

[41]  Anders S. Henriksson Biochronology of the terminal Cretaceous calcareous nannofossil Zone of Micula prinsii , 1993 .

[42]  B. Huber Upper cretaceous planktic foraminiferal biozonation for the austra realm , 1992 .

[43]  B. Huber Upper Cretaceous planktic foraminiferal biozonation for the Austral Realm , 1992 .

[44]  J. Mount,et al.  Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain) , 1991 .

[45]  M. Moreau,et al.  Biostratigraphy and magnetostratigraphy of the Cretaceous/Tertiary Sopelana section (Basque country) , 1991 .

[46]  B. Huber Maestrichtian Planktonic Foraminifer Biostratigraphy of the Maud Rise (Weddell Sea|Antarctica): ODP Leg 113 Holes 689B and 690C , 1990 .

[47]  J. Pospichal,et al.  Maestrichtian Calcareous Nannofossil Biostratigraphy of Maud Rise|ODP Leg 113 Sites 689 and 690|Weddell Sea , 1990 .

[48]  J. Mount,et al.  Origin of limestone/marl alterations in the upper Maastrichtian of Zumaya, Spain , 1986 .

[49]  H. Thierstein,et al.  Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlations near Gubbio, Italy , 1985 .

[50]  H. Manivit Paleogene and Upper Cretaceous Calcareous Nannofossils from Deep Sea Drilling Project Leg 74 , 1984 .

[51]  J. Kirschvink The least-squares line and plane and the analysis of palaeomagnetic data , 1980 .

[52]  D. Herm Mikropaläontologisch-stratigraphische Untersuchungen im Kreideflysch zwischen Deva und Zumaya (Prov. Guipuzcoa, Nordspanien) , 1965 .

[53]  Marzo,et al.  Calcareous Nannofossil Biostratigraphy , 2021, Stratigraphy & Timescales.

[54]  Astronomy Astrophysics Letter to the Editor , 2011 .

[55]  H. Naruse,et al.  Faunal turnover at the end of the Cretaceous in the North Pacific region: Implications from combined magnetostratigraphy and biostratigraphy of the Maastrichtian Senpohshi Formation in the eastern Hokkaido Island, northern Japan , 2009 .

[56]  J. Cuevas,et al.  Tectónica de inversión en la Playa de Sopelana (Arco Vasco, Pirineos occidentales) , 2008 .

[57]  Julia Bella Rodriguez,et al.  Contenidos de CaCO3 en los pares marga-caliza del Maastrichtiense y Daniense en Sopelana, Arco Vasco: facies grises frente a facies rojas , 2007 .

[58]  Ruth Ibisate,et al.  Espesores y contenido de CaCO3 en los pares marga-caliza del Daniense (Sopelana, Arco Vasco) , 2006 .

[59]  Hole 861A,et al.  Shipboard Scientific Party , 2006 .

[60]  I. Llano Variaciones de espesor y de contenido en CaCO3 en los pares marga-caliza del Maastrichtiense inferior en Sopelana (Arco Vasco) , 2005 .

[61]  G. Odin,et al.  Chapter D4e Upper Campanian-Maastrichtian ammonites (Nostoceratidae, Diplomoceratidae) from Tercis les Bains (Landes, France) , 2001 .

[62]  P. Courville,et al.  Chapter D4g The Campanian-Maastrichtian ammonite fauna from Tercis (Landes, France); a synthetic view , 2001 .

[63]  G. Odin The Campanian-Maastrictian stage boundary : characterisation at Tercis les Bains (France) and correlation with Europe and other continents , 2001 .

[64]  M. Melinte,et al.  Chapter C3e Results of the cooperative study on the calcereous nannofossils across the Campanian-Maastrichtian boundary at Tercis les Bains (Landes, France) , 2001 .

[65]  J. Baceta,et al.  Paleocene Strata of the Basque Country, Western Pyrenees, Northern Spain: Facies and Sequence Develepment in a Deep-Water Starved Basin , 1998 .

[66]  Young,et al.  Higher classification of calcareous nannofossils. , 1997, Journal of Nannoplankton Research.

[67]  A. Ingólfsson Vital role of drift algae in the life history of the pelagic harpacticoid Parathalestris croni in the northern North Atlantic , 1997 .

[68]  T. Herbert,et al.  Orbital Chronology of Cretaceous-Paleocene Marine Sediments , 1995 .

[69]  J. Burnett A new nannofossil zonation scheme for the Boreal Campanian. , 1990, Journal of Nannoplankton Research.

[70]  Xabier Orue-Etxebarria,et al.  The Cretaceous-Tertiary boundary in Sopelana (Biscay, Basque Country) , 1982 .

[71]  R. Bullen Newton XV.—On some Cretaceous Brachiopoda and Mollusca from Angola, Portuguese West Africa , 1917, Transactions of the Royal Society of Edinburgh.

[72]  H. Matsumoto,et al.  Nonlinear Processes in Geophysics on the Three-dimensional Configuration of Electrostatic Solitary Waves , 2022 .