Multiplexed spectroscopic detections.

This review describes various platforms used for multiplexed spectroscopic analysis. We highlight the use of different types of spectroscopy for multiplexed detections, including Raman spectroscopy, surface-enhanced Raman spectroscopy, surface plasmon resonance, and fluorescence. This review also explores the use of cross-reactive sensors in combination with pattern-recognition algorithms to monitor multiple analytes in aqueous and vapor matrices. It also discusses applications of these techniques, paying special attention to their use in the detection of biologically relevant analytes.

[1]  Alyson V. Whitney,et al.  An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs , 2006 .

[2]  J B Shear,et al.  Development of multianalyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities. , 2001, Journal of the American Chemical Society.

[3]  D. Walt,et al.  Fabrication and optical characterization of imaging fiber-based nanoarrays. , 2005, Talanta.

[4]  J. Remacle,et al.  DNA microarray to detect and identify trichothecene‐ and moniliformin‐producing Fusarium species , 2006, Journal of applied microbiology.

[5]  David R Walt,et al.  Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. , 2006, Analytical chemistry.

[6]  S. Quake,et al.  Gene expression analysis with universal n-mer arrays. , 2002, Genome research.

[7]  Lloyd M. Smith,et al.  In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces , 1997 .

[8]  George P. Anderson,et al.  RAPTOR: a fluoroimmunoassay-based fiber optic sensor for detection of biological threats , 2003 .

[9]  Lori A Burns,et al.  Color-blind fluorescence detection for four-color DNA sequencing. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  O. Wolfbeis,et al.  Optical multiple chemical sensing: status and current challenges. , 2007, The Analyst.

[11]  Mary T McBride,et al.  Multiplexed liquid arrays for simultaneous detection of simulants of biological warfare agents. , 2003, Analytical chemistry.

[12]  N S Lewis,et al.  Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. , 1998, Analytical chemistry.

[13]  Howell G. M. Edwards,et al.  Raman spectroscopic database of azo pigments and application to modern art studies , 2000 .

[14]  N. Yamamoto,et al.  Microarray fabrication with covalent attachment of DNA using Bubble Jet technology , 2000, Nature Biotechnology.

[15]  Neal A. Rakow,et al.  A colorimetric sensor array for odour visualization , 2000, Nature.

[16]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[17]  Chris A. Rowe-Taitt,et al.  Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. , 2000, Biosensors & bioelectronics.

[18]  R. V. Van Grieken,et al.  Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry. , 2007, Analytical chemistry.

[19]  Javier Gómez-Elvira,et al.  A multi-array competitive immunoassay for the detection of broad-range molecular size organic compounds relevant for astrobiology , 2006 .

[20]  T A Dickinson,et al.  Current trends in 'artificial-nose' technology. , 1998, Trends in biotechnology.

[21]  R. V. Van Duyne,et al.  A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. , 2004, Journal of the American Chemical Society.

[22]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[23]  Chris A. Rowe-Taitt,et al.  Array biosensor for detection of biohazards. , 2000, Biosensors & bioelectronics.

[24]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[25]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[26]  E. Anslyn,et al.  Pattern-based discrimination of enantiomeric and structurally similar amino acids: an optical mimic of the mammalian taste response. , 2006, Journal of the American Chemical Society.

[27]  Sakurai,et al.  Trace chemical characterization using monochromatic X-ray undulator radiation , 2000, Analytical chemistry.

[28]  Duncan Graham,et al.  Simple multiplex genotyping by surface-enhanced resonance Raman scattering. , 2002, Analytical chemistry.

[29]  S. Penn,et al.  Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. , 2000, Environmental health perspectives.

[30]  Liang Tang,et al.  Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases. , 2006, Journal of biomedical optics.

[31]  G. Rao,et al.  Optical oxygen sensor using fluorescence lifetime measurement. , 1994, Advances in experimental medicine and biology.

[32]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[33]  Kenneth S Suslick,et al.  Colorimetric sensor arrays for volatile organic compounds. , 2006, Analytical chemistry.

[34]  Mahesh Uttamchandani,et al.  Small molecule microarrays: recent advances and applications. , 2005, Current opinion in chemical biology.

[35]  K. Suslick,et al.  Colorimetric sensor arrays for the analysis of beers: a feasibility study. , 2006, Journal of agricultural and food chemistry.

[36]  D R Walt,et al.  High-density fiber-optic DNA random microsphere array. , 2000, Analytical chemistry.

[37]  N. Yagi,et al.  Wavelength-dispersive total-reflection X-ray fluorescence with an efficient Johansson spectrometer and an undulator X-ray source: detection of 10-16 g-level trace metals. , 2002, Analytical chemistry.

[38]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[39]  D. Suh,et al.  A novel fluorescence temperature sensor based on a surfactant‐free PVA/borax/2‐naphthol hydrogel network system , 2004 .

[40]  D. Walt Electronic Noses: Wake Up and Smell the Coffee , 2005 .

[41]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. , 2007, Nano letters.

[42]  A. Jasiński,et al.  Application of linear discriminant analysis in prostate cancer research by synchrotron radiation-induced X-ray emission. , 2007, Analytical chemistry.

[43]  David R Walt,et al.  Extending the longevity of fluorescence-based sensor arrays using adaptive exposure. , 2005, Analytical chemistry.

[44]  Jiri Homola,et al.  DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. , 2004, Analytical chemistry.

[45]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[46]  Chen Zhang,et al.  Colorimetric sensor array for soft drink analysis. , 2007, Journal of agricultural and food chemistry.

[47]  Mark Bradley,et al.  Tagging in combinatorial chemistry: the use of coloured and fluorescent beads , 1997 .

[48]  Dustin J Maly,et al.  Peptide microarrays for the determination of protease substrate specificity. , 2002, Journal of the American Chemical Society.

[49]  Frances S Ligler,et al.  A microarray immunoassay for simultaneous detection of proteins and bacteria. , 2002, Analytical chemistry.

[50]  J. Kawai,et al.  Portable total reflection X-ray fluorescence spectrometer for nanogram Cr detection limit. , 2007, Analytical chemistry.

[51]  Shiping Fang,et al.  Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. , 2006, Journal of the American Chemical Society.

[52]  J. Burkholder,et al.  Development of Real-Time PCR Assays for Rapid Detection of Pfiesteria piscicida and Related Dinoflagellates , 2000, Applied and Environmental Microbiology.

[53]  H. Fenniri,et al.  Spectroscopically encoded microspheres for antigen biosensing. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[54]  David R. Walt,et al.  Fiber-Optic Microarray for Simultaneous Detection of Multiple Harmful Algal Bloom Species , 2006, Applied and Environmental Microbiology.

[55]  Kay Severin,et al.  A chemosensor array for the colorimetric identification of 20 natural amino acids. , 2005, Journal of the American Chemical Society.

[56]  L. Miller,et al.  A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues , 2007, Analytical and bioanalytical chemistry.

[57]  Gabriel A Kwong,et al.  DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. , 2007, Journal of the American Chemical Society.

[58]  S. P. Fodor,et al.  Using oligonucleotide probe arrays to access genetic diversity. , 1995, BioTechniques.

[59]  Tuan Vo-Dinh,et al.  Development of a compact, handheld Raman instrument with no moving parts for use in field analysis , 2000 .

[60]  M. Porter,et al.  Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. , 1999, Analytical chemistry.

[61]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Shuming Nie,et al.  Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms , 2004, Journal of Fluorescence.

[63]  Bong-Hyun Jun,et al.  Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. , 2006, Analytical chemistry.

[64]  Martin Dufva,et al.  Fabrication of high quality microarrays. , 2005, Biomolecular engineering.

[65]  Bart Vekemans,et al.  Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. , 2004, Analytical chemistry.

[66]  Roland Zengerle,et al.  Non-contact production of oligonucleotide microarrays using the highly integrated TopSpot nanoliter dispenser. , 2004, The Analyst.

[67]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[68]  Claudia R. Schröder,et al.  Time-resolved pH/pO2 mapping with luminescent hybrid sensors. , 2007, Analytical chemistry.

[69]  Kiyoshi Toko,et al.  RETRACTED: Electronic tongue , 1998 .

[70]  A. Simionovici,et al.  Classification of nerve cells from substantia nigra of patients with Parkinson's disease and amyotrophic lateral sclerosis with the use of X-ray fluorescence microscopy and multivariate methods. , 2005, Analytical chemistry.

[71]  David R Walt,et al.  Optical fiber-based sensors: application to chemical biology. , 2005, Current opinion in chemical biology.

[72]  P. Treado,et al.  Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. , 2007, Analytical chemistry.

[73]  Sang Bok Lee,et al.  Suspension array with shape-coded silica nanotubes for multiplexed immunoassays. , 2007, Analytical chemistry.

[74]  John T McDevitt,et al.  A microbead array chemical sensor using capillary-based sample introduction: toward the development of an "electronic tongue". , 2005, Biosensors & bioelectronics.

[75]  David R Walt,et al.  Enhancing vapor sensor discrimination by mimicking a canine nasal cavity flow environment. , 2003, Journal of the American Chemical Society.

[76]  Microbead Patterning on Porous Films with Ordered Arrays of Pores , 2006 .

[77]  Vincent M Rotello,et al.  Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. , 2007, Nature nanotechnology.

[78]  Andreas Hierlemann,et al.  Evaluation of multitransducer arrays for the determination of organic vapor mixtures. , 2008, Analytical chemistry.

[79]  Fuli Yu,et al.  Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. , 2005, Genome research.

[80]  Manuel A. Palacios,et al.  Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water. , 2007, Journal of the American Chemical Society.

[81]  M. Kaneko,et al.  Effect of humidity on photoluminescence from Ru(bpy)32+ incorporated into a polysaccharide solid film and its application to optical humidity sensor , 2005 .

[82]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[83]  P. Belgrader,et al.  PCR Detection of Bacteria in Seven Minutes , 1999, Science.

[84]  George P. Anderson,et al.  Automated Fiber Optic Biosensor for Multiplexed Immunoassays , 2000 .

[85]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[86]  R J Fulton,et al.  Advanced multiplexed analysis with the FlowMetrix system. , 1997, Clinical chemistry.

[87]  Otto S. Wolfbeis,et al.  Fiber-optic fluorosensor for oxygen and carbon dioxide , 1988 .

[88]  J. Kauer,et al.  A chemical-detecting system based on a cross-reactive optical sensor array , 1996, Nature.

[89]  Delana A. Nivens,et al.  Multilayer sol-gel membranes for optical sensing applications: single layer pH and dual layer CO(2) and NH(3) sensors. , 2002, Talanta.

[90]  F. Bright,et al.  Tailored quartz pins for high-density microsensor array fabrication. , 2007, Analytical chemistry.

[91]  Tatsuro Endo,et al.  Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. , 2006, Analytical chemistry.

[92]  D R Walt,et al.  Randomly ordered addressable high-density optical sensor arrays. , 1998, Analytical chemistry.

[93]  J. Kauer,et al.  Convergent, self-encoded bead sensor arrays in the design of an artificial nose. , 1999, Analytical chemistry.

[94]  E. Zellers,et al.  Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis. , 1999, Analytical chemistry.

[95]  S. Schreiber,et al.  Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. , 2003, Angewandte Chemie.

[96]  David R Walt,et al.  Duplexed sandwich immunoassays on a fiber-optic microarray. , 2006, Analytica chimica acta.

[97]  Alan Waggoner,et al.  Fluorescent labels for proteomics and genomics. , 2006, Current opinion in chemical biology.

[98]  Stuart L. Schreiber,et al.  Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays , 2002, Nature.

[99]  Daniel S. Palacios,et al.  A post-PKS oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. , 2007, Journal of the American Chemical Society.

[100]  David R Walt,et al.  Combinatorial decoding: an approach for universal DNA array fabrication. , 2003, Journal of the American Chemical Society.

[101]  Aaron Shipway,et al.  Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. , 2004, Chemistry & biology.

[102]  Ingo Klimant,et al.  Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems , 2007 .

[103]  Nathan S Lewis,et al.  Vapor sensing using polymer/carbon black composites in the percolative conduction regime. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[104]  D R Walt,et al.  Array-to-array transfer of an artificial nose classifier. , 2001, Analytical chemistry.

[105]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[106]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[107]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[108]  David R. Walt,et al.  Ordered nanowell arrays , 1996 .

[109]  C. Lowe,et al.  Optical biosensor for monitoring microbial cells. , 1994, Analytical chemistry.

[110]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Richard C. Benson,et al.  Development of an automated handheld immunoaffinity fluorometric biosensor , 2000, Photonics West - Biomedical Optics.

[112]  David R Walt,et al.  Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. , 2005, Analytical chemistry.

[113]  D. S. Gill,et al.  Optical multibead arrays for simple and complex odor discrimination. , 2001, Analytical chemistry.

[114]  S. P. Fodor,et al.  Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays , 1999, Nature Genetics.

[115]  Richard P Van Duyne,et al.  Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy. , 2007, Analytical chemistry.

[116]  I. Ruach-Nir,et al.  Silica-stabilized gold island films for transmission localized surface plasmon sensing. , 2007, Journal of the American Chemical Society.

[117]  I Klimant,et al.  Dual lifetime referencing as applied to a chloride optical sensor. , 2001, Analytical chemistry.

[118]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[119]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[120]  D. A. Stuart,et al.  Surface-enhanced Raman spectroscopy of half-mustard agent. , 2006, The Analyst.

[121]  David R. Walt,et al.  Fluorescence-based nucleic acid detection and microarrays , 2002 .

[122]  Christian Krause,et al.  Composite Material for Simultaneous and Contactless Luminescent Sensing and Imaging of Oxygen and Carbon Dioxide , 2006 .

[123]  Olga Lyandres,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[124]  F. Chavez,et al.  Detection and quantification of Pseudo‐nitzschia australis in cultured and natural populations using LSU rRNA‐targeted probes , 1997 .

[125]  D. Lim,et al.  A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. , 2004, Journal of food protection.

[126]  Chi‐Huey Wong,et al.  Evaluation of RNA-binding specificity of aminoglycosides with DNA microarrays , 2006, Proceedings of the National Academy of Sciences.

[127]  Joseph Irudayaraj,et al.  Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. , 2007, Analytical chemistry.

[128]  Joseph Irudayaraj,et al.  Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.

[129]  J. Kauer,et al.  Rapid analyte recognition in a device based on optical sensors and the olfactory system. , 1996, Analytical chemistry.

[130]  Dorothea K. Thompson,et al.  Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. , 2004, Environmental science & technology.

[131]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. , 2005, Nano letters.

[132]  M L Myrick,et al.  Field-deployable sniffer for 2,4-dinitrotoluene detection. , 2001, Environmental science & technology.

[133]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[134]  M. Shimomura,et al.  Water-Assisted Formation of Micrometer-Size Honeycomb Patterns of Polymers , 2000 .