Which Networks are Least Susceptible to Cascading Failures?

The spread of a cascading failure through a network is an issue that comes up in many domains: in the contagious failures that spread among financial institutions during a financial crisis, through nodes of a power grid or communication network during a widespread outage, or through a human population during the outbreak of an epidemic disease. Here we study a natural model of threshold contagion: each node is assigned a numerical threshold drawn independently from an underlying distribution, and it will fail as soon as its number of failed neighbors reaches this threshold. Despite the simplicity of the formulation, it has been very challenging to analyze the failure processes that arise from arbitrary threshold distributions, even qualitative questions concerning which graphs are the most resilient to cascading failures in these models have been difficult to resolve. Here we develop a set of new techniques for analyzing the failure probabilities of nodes in arbitrary graphs under this model, and we compare different graphs according to the maximum failure probability of any node in the graph when thresholds are drawn from a given distribution. We find that the space of threshold distributions has a surprisingly rich structure when we consider the risk that these thresholds induce on different graphs: small shifts in the distribution of the thresholds can favor graphs with a maximally clustered structure (i.e., cliques), those with a maximally branching structure (trees), or even intermediate hybrids.

[1]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[2]  Franklin Allen,et al.  Financial Contagion , 2000, Journal of Political Economy.

[4]  Franklin Allen,et al.  Financial Contagion Journal of Political Economy , 1998 .

[5]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[6]  Peter Sheridan Dodds,et al.  Universal behavior in a generalized model of contagion. , 2004, Physical review letters.

[7]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[8]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[9]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Schelling Micromotives and Macrobehavior , 1978 .

[11]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[12]  Sandip Roy,et al.  The influence model , 2001 .

[13]  J. T. Cox,et al.  Nonlinear Voter Models , 1991 .

[14]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[15]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[16]  Béla Bollobás,et al.  Random Graphs , 1985 .