Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

[1]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[2]  E. Hertzberg,et al.  Gap junctions: New tools, new answers, new questions , 1991, Neuron.

[3]  Zhigang Li,et al.  Molecular Dynamics Simulation of Composite Nanochannels as Nanopumps Driven by Symmetric Temperature Gradients , 2010 .

[4]  Zuzanna S Siwy,et al.  Conical nanopore membranes: controlling the nanopore shape. , 2006, Small.

[5]  Lei Jiang,et al.  Malachite Green Derivative–Functionalized Single Nanochannel: Light‐and‐pH Dual‐Driven Ionic Gating , 2012, Advanced materials.

[6]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[7]  Z. Siwy,et al.  Comparison of bipolar and unipolar ionic diodes , 2010, Nanotechnology.

[8]  L. A. Baker,et al.  Conical nanopore membranes: solvent shaping of nanopores , 2006 .

[9]  K. Willecke,et al.  Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells , 1995, The Journal of cell biology.

[10]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[11]  Xu Hou,et al.  Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. , 2012, Angewandte Chemie.

[12]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[13]  Mubarak Ali,et al.  Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization. , 2012, ACS nano.

[14]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[15]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[16]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[17]  N. Gilula,et al.  The Gap Junction Communication Channel , 1996, Cell.

[18]  Lei Jiang,et al.  Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Wei Guo,et al.  A biomimetic zinc activated ion channel. , 2010, Chemical communications.

[20]  Lei Jiang,et al.  Assembly of F0F1-ATPase into solid state nanoporous membrane. , 2011, Chemical communications.

[21]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[22]  Lei Jiang,et al.  Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. , 2007, Angewandte Chemie.

[23]  W. Park,et al.  ZnO Nanorod Logic Circuits , 2005, Advanced materials.

[24]  C. R. Martin,et al.  Conical nanopore membranes. Preparation and transport properties. , 2004, Analytical chemistry.

[25]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[26]  Xu Hou,et al.  Enantioselective recognition in biomimetic single artificial nanochannels. , 2011, Journal of the American Chemical Society.

[27]  Xu Hou,et al.  Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology , 2011 .

[28]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[29]  R. Neumann,et al.  Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements , 2007 .

[30]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[31]  Reinhard Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[32]  Xu Hou,et al.  Current rectification in temperature-responsive single nanopores. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Javier Cervera,et al.  Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications , 2011 .

[34]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[35]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[36]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[37]  Jin Zhai,et al.  Light and pH Cooperative Nanofluidic Diode Using a Spiropyran‐Functionalized Single Nanochannel , 2012, Advanced materials.

[38]  P. Apel,et al.  Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties , 2008, Nanotechnology.