A geometric approach to differential Hamiltonian systems and differential Riccati equations

Motivated by research on contraction analysis and incremental stability/stabilizability the study of `differential properties' has attracted increasing attention lately. Previously lifts of functions and vector fields to the tangent bundle of the state space manifold have been employed for a geometric approach to differential passivity and dissipativity. In the same vein, the present paper aims at a geometric underpinning and elucidation of recent work on `control contraction metrics' and `generalized differential Riccati equations'.

[1]  J. Duistermaat On Hessian Riemannian structures , 1999 .

[2]  Ian R. Manchester,et al.  Control Contraction Metrics: Differential L2 Gain and Observer Duality , 2014, ArXiv.

[3]  Arjan van der Schaft,et al.  On Differential Passivity , 2013, NOLCOS.

[4]  A. Schaft,et al.  Variational and Hamiltonian Control Systems , 1987 .

[5]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[6]  R. Brockett,et al.  Foundations of mechanics, 2nd edition , 1981, IEEE Transactions on Automatic Control.

[8]  André Leroy,et al.  Pseudolinear transformations and evaluation in Ore extensions , 1995 .

[9]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[10]  Rodolphe Sepulchre,et al.  On Differentially Dissipative Dynamical Systems , 2013, NOLCOS.

[11]  T. J. Willmore,et al.  TANGENT AND COTANGENT BUNDLES , 1975 .

[12]  Ian R. Manchester,et al.  An Amendment to "Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design" , 2017, ArXiv.

[13]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[14]  Arjan van der Schaft,et al.  Characterization of Gradient Control Systems , 2005, SIAM J. Control. Optim..

[15]  A. Schaft,et al.  On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems , 1999 .

[16]  A. J. van der Schaft,et al.  Implicit Hamiltonian Systems with Symmetry , 1998 .

[17]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[18]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[19]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Andr'e Leroy,et al.  Wedderburn polynomials over division rings, I , 2004 .

[21]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[22]  Ian R. Manchester,et al.  21 M ar 2 01 4 Control Contraction Metrics : Differential L 2 Gain and Observer Duality , 2014 .

[23]  Yu Kawano,et al.  Observability Analysis of Nonlinear Systems Using Pseudo-Linear Transformation , 2013, NOLCOS.

[24]  Andrew D. Lewis,et al.  Geometric Jacobian linearization and LQR theory , 2011 .

[25]  A. Leroy,et al.  Wedderburn polynomials over division rings, II , 2007, 0706.3515.

[26]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[27]  Ian R. Manchester,et al.  Control Contraction Metrics and Universal Stabilizability , 2013, ArXiv.

[28]  Claude H. Moog,et al.  Definition of Eigenvalues for a Nonlinear System , 2013, NOLCOS.