Novel 3-D Multilayer Terahertz Packaging Technology for Integrating Photodiodes Arrays and Rectangular Waveguide-Power Combiners

A novel 3-D multilayer packaging technology for integrating an array of indium phosphide (InP)-based terahertz photodiodes (THz-PDs) with a rectangular waveguide power combiner (WR-PC) is proposed. The packaging concept is based on a vertical integration of an InP THz-PDs array with a multilayered WR-PC made of metallized glass-reinforced epoxy FR4 laminates using direct wafer bonding. The key motivation of this work is to develop a low-cost packaging technology for coherent power combining in the THz regime. The proposed multilayered packaging technology is generic, i.e., in principle, it would allow the integration of different and multiple planar arrays featuring photonic or electronic devices. To our knowledge, this is the first 3-D packaging concept for the THz frequency range that enables the integration of 2-D arrays of photonic or electronic devices. As a proof of concept, we here report on the design, fabrication, and experimental characterization of a straight hollow rectangular waveguide (WR-waveguide) and a <inline-formula> <tex-math notation="LaTeX">$2 \times 1$ </tex-math></inline-formula> WR-PC for the WR3-band (220–320 GHz). Both packages feature standard cross-sectional hollow WR3-waveguides (<inline-formula> <tex-math notation="LaTeX">$862\,\,\mu \text{m}\,\,\times 431\,\,\mu \text{m}$ </tex-math></inline-formula>) and corresponding standard UG-387/U-M flanges. They are fabricated using a stack of vertically bonded unit cells, each consisting of a 50-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-thick glass-reinforced epoxy FR4 laminate with a 23-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-thick top and bottom metallization. The size of a single quadratic FR4 unit cell is 24 mm <inline-formula> <tex-math notation="LaTeX">$\times24$ </tex-math></inline-formula> mm. The fabricated straight WR3-waveguide consists of a stack of 57 FR4 unit cells of a total length of 5.4 mm. The measured transmission loss is less than 0.3 dB/mm and the return loss (RL) is less than 10 dB, within the entire WR3-band. Next, a multilayered FR<inline-formula> <tex-math notation="LaTeX">$4\,\,2\,\,\times1$ </tex-math></inline-formula> WR3-PC is reported. Its design is based on that of a T-junction in <inline-formula> <tex-math notation="LaTeX">$H$ </tex-math></inline-formula>-plane where the inputs are modified to be on the same plane for facilitating subsequent integration with the planar InP chips of THz-PDs. The length of the WR3-PC is intentionally reduced for compactness and its impedance is gradually matched to achieve a low insertion loss (IL) over the entire WR3-band. The fabricated multilayered WR3-PC consists of 41 FR4 unit-cells resulting in a total thickness of only 3.9 mm. For the frequency range from 240 to 320 GHz, the simulated IL, minimum isolation, and RL are 0.16, 4.2, and 6.5 dB, respectively. For the experimental characterization using a WR3-band vector network analyzer (VNA), two multilayered FR<inline-formula> <tex-math notation="LaTeX">$4\,\,2\times 1$ </tex-math></inline-formula> WR3-PCs are connected back-to-back (B2B). The measured average IL and RL within the frequency range from 240 to 320 GHz are found to be 3.6 dB and below 5.2 dB, respectively. The measured average IL for a single WR3-PC is 1.8 dB, which is higher than expected because of imperfect fabrication and misalignment losses during the integration. An improved fabrication and packaging process will allow mitigating the losses in future runs.

[1]  A. Steffan,et al.  Planar 0.05–1.1 THz Laminate-Based Transition Designs for Integrating High-Frequency Photodiodes With Rectangular Waveguides , 2019, Journal of Lightwave Technology.

[2]  Yong Fan,et al.  Ka-Band Rectangular-Waveguide Gysel Power Divider with Low Insertion Loss and High Output Isolation , 2018, Journal of Infrared, Millimeter, and Terahertz Waves.

[3]  Tadao Nagatsuma,et al.  Over 300 GHz bandwidth UTC-PD module with 600 GHz band rectangular-waveguide output , 2018 .

[4]  Qian Li,et al.  0.85 THz truncated sine waveguide traveling-wave tube with sheet beam tunnel , 2018 .

[5]  A. Stöhr,et al.  Lens-assisted quasi-optical THz transmitter employing antenna-integrated triple transit region photodiodes , 2017, 2017 International Topical Meeting on Microwave Photonics (MWP).

[6]  Andreas Beling,et al.  High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes , 2017, Journal of Lightwave Technology.

[7]  Ziqiang Yang,et al.  Design of a Broadband E-Plane Power Combiner Based on Quarter-Arc Bent Rectangular Waveguides for Sub-THz and THz Wave , 2016 .

[8]  E. Schamiloglu,et al.  Efficient power combiner for THz radiation , 2016 .

[9]  Yanyu Wei,et al.  Investigation of 0.38 THz backward-wave oscillator based on slotted sine waveguide and pencil electron beam , 2016 .

[10]  A. Rivera-Lavado,et al.  Dielectric Rod Waveguide Antenna as THz Emitter for Photomixing Devices , 2015, IEEE Transactions on Antennas and Propagation.

[11]  S. R. Zinka,et al.  Power Dividers and Directional Couplers , 2015 .

[12]  Roger A Lewis,et al.  A review of terahertz sources , 2014 .

[13]  Ho-Jin Song,et al.  300-GHz Step-Profiled Corrugated Horn Antennas Integrated in LTCC , 2014, IEEE Transactions on Antennas and Propagation.

[14]  A. Chirkov,et al.  Terahertz gyrotrons: State of the art and prospects , 2014 .

[15]  T. Clark,et al.  A W-band photonic array , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[16]  Tolga Tekin,et al.  Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power. , 2014, Optics express.

[17]  Fan Zhang,et al.  Sub-THz Four-Way Waveguide Power Combiner With Low Insertion Loss , 2014, Journal of Infrared, Millimeter, and Terahertz Waves.

[18]  A. Stoehr,et al.  Compact photonic millimeter wave (200-300 GHz) transmitters based on semicircular bow-tie antenna-integrated 1.55 μm triple transit region photodiodes , 2014 .

[19]  W. He,et al.  High power wideband gyrotron backward wave oscillator operating towards the terahertz region. , 2013, Physical review letters.

[20]  T. Nagatsuma,et al.  Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW , 2012, IEEE Microwave and Wireless Components Letters.

[21]  Yanyu Wei,et al.  A watt-class 1-THz backward-wave oscillator based on sine waveguide , 2012 .

[22]  G. Chattopadhyay,et al.  Technology, Capabilities, and Performance of Low Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.

[23]  Safumi Suzuki,et al.  Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature , 2010 .

[24]  Tadao Nagatsuma,et al.  Terahertz wireless communication link at 300 GHz , 2010, 2010 IEEE International Topical Meeting on Microwave Photonics.

[25]  N. Shimizu,et al.  Generation of frequency-modulated sub-terahertz signal using microwave photonic technique. , 2010, Optics express.

[26]  Choonsup Lee,et al.  A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band , 2010, IEEE Transactions on Microwave Theory and Techniques.

[27]  Nikolay A. Vinokurov,et al.  Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements , 2010 .

[28]  Claudio Paoloni,et al.  Corrugated Rectangular Waveguide Tunable Backward Wave Oscillator for Terahertz Applications , 2010, IEEE Transactions on Electron Devices.

[29]  V. Manuilov,et al.  Large-Orbit Gyrotron operation in terahertz frequency range , 2009, 2009 IEEE International Conference on Plasma Science - Abstracts.

[30]  T. Ishibashi,et al.  High‐power RF photodiodes and their applications , 2009 .

[31]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[32]  S. Mitsudo,et al.  Development of Terahertz FU CW Gyrotron Series for DNP , 2008 .

[33]  J. Mateos,et al.  Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes , 2008 .

[34]  G. N. Kulipanov,et al.  Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser , 2008 .

[35]  W. Kwok,et al.  Emission of Coherent THz Radiation from Superconductors , 2007, Science.

[36]  Tomofumi Furuta,et al.  Photonic millimetre- and sub-millimetrewave generation using J-band rectangularwaveguide-output uni-travelling-carrier photodiode module , 2006 .

[37]  T. Suni,et al.  Direct wafer bonding for MEMS and microelectronics , 2006 .

[38]  Valery N. Shastin,et al.  Terahertz lasers based on germanium and silicon , 2005 .

[39]  L. Varani,et al.  Voltage tuneable terahertz emission from a ballistic nanometer InGaAs∕InAlAs transistor , 2005 .

[40]  K. Chao,et al.  Theory of a strained p-Ge resonant-state terahertz laser , 2004 .

[41]  G. Caryotakis,et al.  Circuit Analysis of an Extended Interaction Klystron , 2004 .

[42]  Sandra Biedron,et al.  OVERVIEW OF TERAHERTZ RADIATION SOURCES , 2004 .

[43]  Tomofumi Furuta,et al.  Rectangular waveguide output unitraveling-carrier photodiode module for high-power photonic millimeter-wave generation in the F-band , 2003 .

[44]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[45]  P. Shen,et al.  Efficient generation of guided millimeter-wave power by photomixing , 2002, IEEE Photonics Technology Letters.

[46]  J M Byrd,et al.  Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. , 2002, Physical review letters.

[47]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[48]  G. Walsh TERAHERTZ RADIATION , 2001 .

[49]  L. Allen,et al.  Principles of Gas Lasers , 1968 .