Stochastic search strategy for estimation of maximum likelihood phylogenetic trees.
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] T. Jukes. CHAPTER 24 – Evolution of Protein Molecules , 1969 .
[3] S. Jeffery. Evolution of Protein Molecules , 1979 .
[4] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[5] D. Mitra,et al. Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.
[6] Emile H. L. Aarts,et al. A new polynomial time cooling schedule , 1985 .
[7] M. Lundy. Applications of the annealing algorithm to combinatorial problems in statistics , 1985 .
[8] V. Cerný. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .
[9] D. Mitra,et al. Convergence and finite-time behavior of simulated annealing , 1986, Advances in Applied Probability.
[10] Alistair I. Mees,et al. Convergence of an annealing algorithm , 1986, Math. Program..
[11] A. Dress,et al. Parsimonious phylogenetic trees in metric spaces and simulated annealing , 1987 .
[12] T Gojobori,et al. Molecular phylogeny and evolution of primate mitochondrial DNA. , 1988, Molecular biology and evolution.
[13] D. Labie,et al. Molecular Evolution , 1991, Nature.
[14] H. Haario,et al. Simulated annealing process in general state space , 1991, Advances in Applied Probability.
[15] H. Bernard,et al. Phylogenetic analysis of 48 papillomavirus types and 28 subtypes and variants: a showcase for the molecular evolution of DNA viruses , 1992, Journal of virology.
[16] Prem K. Goel,et al. A stochastic probing algorithm for global optimization , 1992, J. Glob. Optim..
[17] Hideo Matsuda,et al. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood , 1994, Comput. Appl. Biosci..
[18] Ziheng Yang. Statistical Properties of the Maximum Likelihood Method of Phylogenetic Estimation and Comparison With Distance Matrix Methods , 1994 .
[19] A. Halpern,et al. Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy , 1995, Journal of virology.
[20] Jon A Yamato,et al. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. , 1995, Genetics.
[21] H Matsuda,et al. Protein phylogenetic inference using maximum likelihood with a genetic algorithm. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
[22] D. Aldous. PROBABILITY DISTRIBUTIONS ON CLADOGRAMS , 1996 .
[23] Joseph T. Chang,et al. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. , 1996, Mathematical biosciences.
[24] D. Barker. LVB 1.0: Reconstructing Evolution with Parsimony and Simulated Annealing , 1997 .
[25] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.
[26] A. Rambaut,et al. Elucidating the Population Histories and Transmission Dynamics of Papillomaviruses Using Phylogenetic Trees , 1997, Journal of Molecular Evolution.
[27] J. S. Rogers,et al. On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. , 1997, Systematic biology.
[28] P. Lewis,et al. A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide sequence data. , 1998, Molecular biology and evolution.
[29] Simulation-based estimation of phylogenetic trees / , 1999 .
[30] M A Newton,et al. Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.
[31] Hani Doss,et al. Phylogenetic Tree Construction Using Markov Chain Monte Carlo , 2000 .
[32] M. P. Cummings,et al. PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .
[33] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .