Ultrasonic tomography of green wood using a non-parametric imaging algorithm with reflected waves

Abstract• Ultrasonic computed tomography in reflection was used to assess the integrity of green wood. Qualitative reflectivity images were obtained from back-scattered measurements by reflection tomography, like ultrasound in medical applications.• The reconstruction algorithm was designed using, in particular, a linear approximation of the forward problem (Born approximation) and based on the assumption that a transversal cross section of wood is isotropic. The experimental device was composed of only one rotating emitter—receiver transducer to record and compute the projections. In this specific case, a tomographic projection was directly associated with a recorded signal. The qualitative aspect of this imaging technique was validated by performing a numerical simulation and tested on a small diameter green wood (Picea abies) log.• The images obtained were geometrically accurate considering the internal inclusions. It was, however, not possible in the simulation to differentiate the object shape from the background (coupling medium) because the reflectivity value associated with the object was too low. The image obtained with the spruce sample mainly showed the position of the bark as indicated by a very high contrast area. The proportion of transmitted energy was, however, sufficient to reconstruct the artificial inclusion within the sample.Résumé• L’imagerie tomographique ultrasonore en réflexion a été employée pour évaluer l’intégrité de bois à l’état vert. La tomographie en réflexion a permis d’obtenir des images qualitatives de réflectivité à partir de mesures rétro — diffusées analogues à l’échographie en médecine.• L’algorithme de reconstruction était conçu en utilisant notamment une approximation linéaire du problème direct (l’approximation de Born) et en supposant que la section transverse du bois était isotrope. Le dispositif expérimental était composé d’un seul transducteur émetteur — récepteur en rotation pour enregistrer et calculer les projections. Dans ce cas spécifique, une projection tomographique était directement associée au signal enregistré. L’aspect qualitatif de cette technique d’imagerie a été validé en effectuant une simulation numérique et a été testé sur un rondin de faible diamètre à l’état vert (Picea abies).• Les images obtenues étaient géométriquement justes en se référant aux inclusions internes. Il n’a cependant pas été possible lors de la simulation de discriminer l’objet de l’arrière plan (milieu couplant) en raison de la trop faible valeur de réflectivité associée à l’objet. L’image obtenue avec l’échantillon d’épicéa a principalement montré la position de l’écorce marquée par un très fort contraste. La proportion d’énergie transmise a cependant été suffisante pour reconstruire l’inclusion artificielle à l’intérieur de l’échantillon.

[1]  P. Niemz,et al.  Orientierende Untersuchungen zur Anwendung der bildgebenden Ultraschallprüfung zur Fehlererkennung in Holz , 2008, Holz als Roh- und Werkstoff.

[2]  Hansruedi Maurer,et al.  A simple anisotropy correction procedure for acoustic wood tomography , 2006 .

[3]  Philippe Rozenberg Nondestructive Characterization and Imaging of Wood , 2005 .

[4]  E. Franceschini,et al.  An Optimization Method for Quantitative Impedance Tomography , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Prof. Voichita Bucur Nondestructive Characterization and Imaging of Wood , 2003, Springer Series in Wood Science.

[6]  P. Lasaygues,et al.  Distorted Born Diffraction Tomography: limits and applications to inverse the ultrasonic field scattered by an non-circular infinite elastic tube , 2009, 0912.3059.

[7]  Henri Baillères,et al.  Experimental Analysis of Acoustic Anisotropy of Green Wood by using Guided Waves , 2006 .

[8]  S. Mensah,et al.  Enhanced compressibility tomography , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Roberto Martinis,et al.  Tomographie ultrasonore pour les arbres sur pied , 2004 .

[10]  Voichita Bucur,et al.  Acoustics of Wood , 1995 .

[11]  Elena Comino,et al.  FEASIBILITY OF ULTRASONIC TOMOGRAPHY FOR NONDESTRUCTIVE TESTING OF DECAY ON LIVING TREES , 2004 .

[12]  Philippe Lasaygues,et al.  Distorted Born Diffraction Tomography Applied to Inverting Ultrasonic Field Scattered by Noncircular Infinite Elastic Tube , 2006, Ultrasonic imaging.

[13]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[14]  Giovanni Nicolotti,et al.  Application and comparison of three tomographic techniques for detection of decay in trees , 2003 .

[15]  Serge Mensah,et al.  Near-field ultrasound tomography. , 2007, The Journal of the Acoustical Society of America.

[16]  J. I. Dunlop Testing of poles by using acoustic pulse method , 2004, Wood Science and Technology.

[17]  Jozsef Bodig,et al.  Orthotropic Elastic Properties of Wood , 1970 .