Dislocation dynamics modelling of radiation damage in thin films

Transmission electron microscopy is a key tool for the extraction of information on radiation damage, the understanding of which is critical for materials development for nuclear fusion and fission reactors. Dislocations in TEM samples are subject to strong image forces, owing to the nanometric sample thicknesses, which may introduce artifacts in the damage analysis. Using dislocation dynamics, we elucidate the roles played by dislocation?surface interactions, dislocation?dislocation interactions and self-interactions due to climb for loop types observed in TEM. Comparisons with analytic solutions for a dislocation loop and an edge dislocation in a half-space are included, and the relationship between glide force and loop tilt examined. The parameters for convergence of the zero-traction boundary conditions are obtained, after which the evolution of dislocation structures in a thin film is studied. It is found that three main length scales govern the physical processes: the image force is governed by the distance of the loop from the surface and scales with the film thickness; the glide force is governed by the image stress as well as the loop?loop interaction stress which is in turn governed by the loop spacing , where ? is the loop density; finally, the climb force depends on the loop size. The three forces compete and their relative magnitudes define the evolution pathway of the dislocation structure.

[1]  D. Bacon,et al.  The dislocation loop near a free surface , 1970 .

[2]  David Bacon,et al.  Anisotropic continuum theory of lattice defects , 1980 .

[3]  Sylvie Aubry,et al.  Modelling dislocations in a free-standing thin film , 2009 .

[4]  Von F. Häussermann Elektronenmikroskopische Untersuchung der Strahlenschädigung durch hochenergetische Goldionen in den kubisch-raumzentrierten Metallen Molybdan und Wolfram , 1972 .

[5]  Marc Fivel,et al.  Implementing image stresses in a 3D dislocation simulation , 1996 .

[6]  M. Fujiwara,et al.  Effects of Transmutation Elements on Neutron Irradiation Hardening of Tungsten , 2007 .

[7]  W. Cai,et al.  Equilibrium shape of dislocation shear loops in anisotropic α-Fe , 2011 .

[8]  Ray S. Fertig,et al.  Simulation of dislocations and strength in thin films: A review , 2009 .

[9]  Vasily V. Bulatov,et al.  A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics , 2006 .

[10]  Jaafar A. El-Awady,et al.  Unravelling the physics of size-dependent dislocation-mediated plasticity , 2015, Nature Communications.

[11]  Huajian Gao,et al.  Dislocations in inhomogeneous media via a moduli perturbation approach: General formulation and two‐dimensional solutions , 1994 .

[12]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[13]  J. Willis,et al.  A line-integral representation for the stresses due to an arbitrary dislocation in an isotropic half-space , 1994 .

[14]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[15]  Maria Comninou,et al.  The angular dislocation in a half space , 1975 .

[16]  Alan Needleman,et al.  Discrete dislocation modeling in three-dimensional confined volumes , 2001 .

[17]  Joost J. Vlassak,et al.  Plastic deformation of freestanding thin films: Experiments and modeling , 2006 .

[18]  Tariq Khraishi,et al.  Free-Surface Effects in 3D Dislocation Dynamics: Formulation and Modeling , 2002 .

[19]  Richard Alan Lesar,et al.  Dislocation Dynamics Simulations of Plasticity in Polycrystalline Thin Films , 2012 .

[20]  Y. Maurissen,et al.  Stress field of a dislocation segment perpendicular to a free surface , 1974 .

[21]  V. Bulatov,et al.  Dislocation Image Stresses at Free Surfaces by the Finite Element Method , 2003 .

[22]  Sergei L. Dudarev,et al.  Dislocation pile-ups in Fe at high temperature , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  J. Lothe,et al.  Elastic Field and Self-Force of Dislocations Emerging at the Free Surfaces of an Anisotropic Halfspace , 1982 .

[24]  W. Curtin,et al.  A Superposition Framework for Discrete Dislocation Plasticity , 2004 .

[25]  Zhongfu Zhou,et al.  In situ study of self-ion irradiation damage in W and W–5Re at 500 °C , 2013 .

[26]  L. Dupuy,et al.  Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion , 2011, 1106.5610.

[27]  E. Yoffe A dislocation at a free surface , 1961 .

[28]  Y. Maurissen,et al.  Stress field of a dislocation segment parallel to a free surface , 1974 .

[29]  Hyung-Jun Chang,et al.  Multiscale modelling of indentation in FCC metals: From atomic to continuum , 2010 .

[30]  M. Hernández-Mayoral,et al.  The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures , 2010 .

[31]  J. Baštecká Interaction of dislocation loop with free surface , 1964 .

[32]  J. Narayan,et al.  Stability of dislocation loops near a free surface , 1972 .

[33]  Hussein M. Zbib,et al.  Advances in Discrete Dislocations Dynamics and Multiscale Modeling , 2009 .

[34]  A. K. Head,et al.  Edge Dislocations in Inhomogeneous Media , 1953 .

[35]  Von F. Häussermann Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen , 1972 .

[36]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[37]  Sylvie Aubry,et al.  Dislocation junctions and jogs in a free-standing FCC thin film , 2011 .

[38]  N. Ghoniem,et al.  The Influence of Crystal Surfaces on Dislocation Interactions in Mesoscopic Plasticity: A Combined Dislocation Dynamics- Finite Element Approach , 2002 .

[39]  K. Schwarz,et al.  Modelling of dislocations intersecting a free surface , 2005 .