Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles

[1]  B. Vakoc,et al.  >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. , 2010, Optics letters.

[2]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[3]  Hannover,et al.  Erste Anwendungen der optischen Kohärenztomographie (OCT) in der Mittelohrchirurgie , 2002 .

[4]  S. Merchant,et al.  Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. , 2013, The Journal of the Acoustical Society of America.

[5]  Erich Goll,et al.  Modeling the eardrum as a string with distributed force. , 2011, The Journal of the Acoustical Society of America.

[6]  Saumil N Merchant,et al.  Comparison of Ear-Canal Reflectance and Umbo Velocity in Patients With Conductive Hearing Loss: A Preliminary Study , 2011, Ear and hearing.

[7]  S. P. Dear,et al.  Middle ear structure in the chinchilla: a quantitative study. , 1988, American journal of otolaryngology.

[8]  E. Lankenau,et al.  Optische Kohärenztomographie in der Mittelohrchirurgie , 2009, HNO.

[9]  U. Fisch,et al.  Malleostapedotomy in Revision Surgery for Otosclerosis , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[10]  S. Merchant,et al.  Motion of the surface of the human tympanic membrane measured with stroboscopic holography , 2010, Hearing Research.

[11]  M. Holley,et al.  Keynote review: The auditory system, hearing loss and potential targets for drug development. , 2005, Drug discovery today.

[12]  John J. Rosowski,et al.  Experimental ossicular fixations and the middle ear’s response to sound: Evidence for a flexible ossicular chain , 2005, Hearing Research.

[13]  J. Kartush Ossicular chain reconstruction. Capitulum to malleus. , 1994, Otolaryngologic clinics of North America.

[14]  J. Kobler,et al.  Subnanometer optical coherence tomographic vibrography. , 2012, Optics letters.

[15]  Woonggyu Jung,et al.  Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. , 2007, Optics letters.

[16]  Ugo Fisch,et al.  Evaluation of Eardrum Laser Doppler Interferometry as a Diagnostic Tool , 2001, The Laryngoscope.

[17]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[18]  Cac T. Nguyen,et al.  Noninvasive in vivo optical detection of biofilm in the human middle ear , 2012, Proceedings of the National Academy of Sciences.

[19]  A. M. Huber,et al.  Schwingungseigenschaften der Ossikel und der Cochlea und deren Bedeutung für unser Gehör , 2011, HNO.

[20]  John J. Rosowski,et al.  Middle-ear pressure gain and cochlear partition differential pressure in chinchilla , 2010, Hearing Research.

[21]  Jont B. Allen,et al.  Time-domain “wave” model of the human tympanic membrane , 2010, Hearing Research.

[22]  J. Dempster,et al.  Tympanometry in the detection of hearing impairments associated with otitis media with effusion. , 1991, Clinical otolaryngology and allied sciences.

[23]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[24]  W. Funnell On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. , 1983, The Journal of the Acoustical Society of America.

[25]  J G Fujimoto,et al.  High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. , 2001, Archives of otolaryngology--head & neck surgery.

[26]  John J. Rosowski,et al.  Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4–25kHz , 2009, Hearing Research.

[27]  J. Kobler,et al.  Dynamic imaging of vocal fold oscillation with four‐dimensional optical coherence tomography , 2010, The Laryngoscope.

[28]  Steven L. Jacques,et al.  A differentially amplified motion in the ear for near-threshold sound detection , 2011, Nature Neuroscience.

[29]  John A. Evans,et al.  Comprehensive volumetric optical microscopy in vivo , 2006, Nature Medicine.

[30]  Ruikang K. Wang,et al.  Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry. , 2012, Journal of biomedical optics.

[31]  John J. Rosowski,et al.  Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane , 2013, Hearing Research.

[32]  Hinrich Staecker,et al.  Optical Coherence Tomography Imaging of the Inner Ear: A Feasibility Study with Implications for Cochlear Implantation , 2008, The Annals of otology, rhinology, and laryngology.

[33]  John J. Rosowski,et al.  Measurements of stapes velocity in live human ears , 2009, Hearing Research.

[34]  Sunil Puria,et al.  Finite element modeling of acousto-mechanical coupling in the cat middle ear. , 2008, The Journal of the Acoustical Society of America.

[35]  Saumil N Merchant,et al.  Experimental and Clinical Studies of Malleus Fixation , 2005, The Laryngoscope.

[36]  Takuji Koike,et al.  Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry. , 2002, The Journal of the Acoustical Society of America.

[37]  Euiheon Chung,et al.  In vivo wide-area cellular imaging by side-view endomicroscopy , 2010, Nature Methods.

[38]  Saumil N Merchant,et al.  Clinical Utility of Laser-Doppler Vibrometer Measurements in Live Normal and Pathologic Human Ears , 2007, Ear and hearing.