A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies)

Background Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. Methodology / Principal Findings 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. Conclusions / Significance Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when analysis is restricted to nonsynonymous change, while total change is necessary for strong support of others. Thus, multiple types of analyses will be necessary to fully resolve lepidopteran phylogeny.

[1]  Cynthia Parr,et al.  Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)? , 2011, Systematic biology.

[2]  H. Shaffer,et al.  Troubleshooting Molecular Phylogenetic Analyses , 2002 .

[3]  Antonis Rokas,et al.  Comparing bootstrap and posterior probability values in the four-taxon case. , 2003, Systematic biology.

[4]  M. Mutanen,et al.  Phylogeny of the mega-diverse Gelechioidea (Lepidoptera): adaptations and determinants of success. , 2011, Molecular phylogenetics and evolution.

[5]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[6]  Adam L. Bazinet The Lattice Project: A multi-model grid computing system , 2009 .

[7]  Costas S. Iliopoulos,et al.  An algorithm for mapping short reads to a dynamically changing genomic sequence , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[8]  G. Robinson,et al.  Tineid Genera of Australia (Lepidoptera) , 1993 .

[9]  Markus Friedrich,et al.  Episodic radiations in the fly tree of life , 2011, Proceedings of the National Academy of Sciences.

[10]  W. Hennig Kritische Bemerkungen zum phylogenetischen System der Insekten. (Mit Beiträgen von H. Bollmann und J. Machatschke). , 1953 .

[11]  Ouglas,et al.  Comparison of Three Methods for Estimating Internal Support on Phylogenetic Trees , 2001 .

[12]  M. P. Cummings,et al.  Increased gene sampling yields robust support for higher‐level clades within Bombycoidea (Lepidoptera) , 2011 .

[13]  J. C. Regier,et al.  A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein‐coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny , 2008 .

[14]  J. Minet The Bombycoidea: phylogeny and higher classification (Lepidoptera: Glossata) , 1994 .

[15]  J. C. Regier,et al.  Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein‐coding nuclear genes , 2005 .

[16]  M. P. Cummings,et al.  A Molecular Phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and Its Implications for Classification, Biogeography and the Evolution of Host Plant Use , 2013, PloS one.

[17]  Mark Johnston,et al.  Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life , 2010, Proceedings of the National Academy of Sciences.

[18]  Satoshi Yamamoto,et al.  Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. , 2007, Molecular phylogenetics and evolution.

[19]  J. Minet Étude Morphologique et Phylogénétique des Organes Tympaniques des Pyraloidea. 1 — Généralités et Homologies. (Lep. Glossata) , 1983, Annales de la Société entomologique de France (N.S.).

[20]  R. Jong Estimating time and space in the evolution of the Lepidoptera , 2007 .

[21]  M. P. Cummings,et al.  Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae) , 2011, BMC Evolutionary Biology.

[22]  C. Young Molecular relationships of the Australian Ennominae (Lepidoptera: Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data , 2006 .

[23]  W. Neumann Walter de Gruyter Berlin-New York , 1982 .

[24]  A. Zwick Molecular phylogeny of Anthelidae and other bombycoid taxa (Lepidoptera: Bombycoidea) , 2008 .

[25]  N. P. Kristensen Molecular phylogenies, morphological homologies and the evolution of moth ‘ears’ , 2012 .

[26]  R. Olmstead,et al.  A simulation study of reduced tree-search effort in bootstrap resampling analysis. , 2000, Systematic biology.

[27]  Jason E Stajich,et al.  Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. , 2008, Systematic biology.

[28]  I. Kitching,et al.  Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes , 2009, PloS one.

[29]  M. Wilkinson Common Cladistic Information and its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles , 1994 .

[30]  A. Skalski,et al.  2. Phylogeny and Palaeontology , 1998 .

[31]  J. Sepkoski,et al.  Insect diversity in the fossil record. , 1993, Science.

[32]  L. Prendini Order Thelyphonida Latreille, 1804. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness , 2011 .

[33]  J. Rota Data partitioning in Bayesian analysis: molecular phylogenetics of metalmark moths (Lepidoptera: Choreutidae) , 2011 .

[34]  R. S. Peigler,et al.  Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein‐coding nuclear genes , 2008 .

[35]  N. Wahlberg,et al.  Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies , 2010, Proceedings of the Royal Society B: Biological Sciences.

[36]  M. P. Cummings,et al.  A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution , 2012, PloS one.

[37]  John W. Brown,et al.  Early stages of the enigmatic Prodidactis mystica (Meyrick) with comments on its new family assignment (Lepidoptera: Prodidactidae) , 2003 .

[38]  J. Shultz,et al.  Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences , 2010, Nature.

[39]  D. Davis A world classification of the Harmacloninae, a new subfamily of Tineidae (Lepidoptera: Tineoidea) , 1998 .

[40]  M. P. Cummings,et al.  A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher‐level classification , 2012 .

[41]  David Penney,et al.  Order Araneae Clerck, 1757. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness , 2011 .

[42]  S. Hedges The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. , 1992, Molecular biology and evolution.

[43]  Daniel S. Myers,et al.  Expanding the Reach of Grid Computing: Combining Globus- and BOINC-Based Systems , 2007, Grid Computing for Bioinformatics and Computational Biology.

[44]  Alexandros Stamatakis,et al.  A Simple and Accurate Method for Rogue Taxon Identification , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[45]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[46]  K. Kjer,et al.  Order Trichoptera Kirby, 1813. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. , 2011 .

[47]  M. P. Cummings,et al.  Evolutionary Framework for Lepidoptera Model Systems , 2009 .

[48]  J. C. Regier,et al.  Increased yield of PCR product from degenerate primers with nondegenerate, nonhomologous 5' tails. , 2005, BioTechniques.

[49]  I. Kitching,et al.  A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera) , 2011 .

[50]  D. Janzen,et al.  Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study , 2009, BMC Evolutionary Biology.

[51]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[52]  F. Marec,et al.  Molecular biology and genetics of the Lepidoptera , 2009 .

[53]  A. Zwick,et al.  Sources of Signal in 62 Protein-Coding Nuclear Genes for Higher-Level Phylogenetics of Arthropods , 2011, PloS one.

[54]  P. Sihvonen,et al.  Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae) , 2011, PloS one.

[55]  Denis Trystram,et al.  Multiple Sequence Alignment and Phylogenetic Inference , 2007, Grid Computing for Bioinformatics and Computational Biology.

[56]  Z. Abdo,et al.  Effects of parameter estimation on maximum-likelihood bootstrap analysis. , 2010, Molecular phylogenetics and evolution.

[57]  J. Miller Cladistics and classification of the Notodontidae (Lepidoptera, Noctuoidea) based on larval and adult morphology. Bulletin of the AMNH ; no. 204 , 1991 .

[58]  D. Davis,et al.  An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world , 2012 .

[59]  Derrick J. Zwickl,et al.  Resolving Discrepancy between Nucleotides and Amino Acids in Deep-Level Arthropod Phylogenomics: Differentiating Serine Codons in 21-Amino-Acid Models , 2012, PloS one.

[60]  Joel Minet,et al.  Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata) , 1991 .

[61]  Michael P. Cummings,et al.  Computing the Tree of Life: Leveraging the Power of Desktop and Service Grids , 2011, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.

[62]  J. Landry,et al.  Order Lepidoptera Linnaeus, 1758. In : Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness , 2011 .

[63]  I. Kitching,et al.  Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea) , 2012 .

[64]  N. P. Kristensen Lepidoptera, moths and butterflies , 1999 .

[65]  Alexandros Stamatakis,et al.  Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice , 2012, Systematic biology.

[66]  N. Wahlberg,et al.  Cretaceous origin and repeated tertiary diversification of the redefined butterflies , 2012, Proceedings of the Royal Society B: Biological Sciences.

[67]  E. V. Nieukerken Order Lepidoptera Linnaeus, 1758. , 2011 .