Calculation of the Structure of a Shrub in the Mandelbrot Set
暂无分享,去创建一个
Miguel Romera | Gerardo Pastor | Fausto Montoya | A. B. Orue | F. Montoya | M. Romera | G. Pastor | A. Martín | Marius-F. Danca | A. Martín | M-F. Danca | A. Orúe
[1] G. Álvarez,et al. Operating with External Arguments of Douady and Hubbard , 2007 .
[2] Ioannis Andreadis,et al. On perturbations of the Mandelbrot map , 2000 .
[3] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[4] Xing-yuan Wang,et al. RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS , 2008 .
[5] Ruihong Jia,et al. The Generalized Julia Set Perturbed by Composing Additive and Multiplicative Noises , 2009 .
[6] Gonzalo Álvarez,et al. Shrubs in the Mandelbrot Set Ordering , 2003, Int. J. Bifurc. Chaos.
[7] X. Y. Wang,et al. Noise-perturbed quaternionic Mandelbrot sets , 2009, Int. J. Comput. Math..
[8] Gonzalo Álvarez,et al. A general view of pseudoharmonics and pseudoantiharmonics to calculate external arguments of Douady and Hubbard , 2009, Appl. Math. Comput..
[9] Zhenfeng Zhang,et al. The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009, Appl. Math. Comput..
[10] Xing-yuan Wang,et al. RENDERING OF THE INSIDE STRUCTURE OF THE GENERALIZED M SET PERIOD BULBS BASED ON THE PRE-PERIOD , 2008 .
[11] R. Helleman. Nonlinear dynamics; Proceedings of the International Conference, New York, NY, December 17-21, 1979 , 1980 .
[12] Ashish Negi,et al. A new approach to dynamic noise on superior Mandelbrot set , 2008 .
[13] G. Foussereau,et al. Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .
[14] J. Argyris,et al. On the Julia set of the perturbed Mandelbrot map , 2000 .
[15] Xu Zhang,et al. Dynamics of the generalized M set on escape-line diagram , 2008, Appl. Math. Comput..
[16] Xingyuan Wang,et al. Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..
[17] Zhang Zhenfeng,et al. The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009 .
[18] D. Schleicher. Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials , 1994, math/9411238.
[19] F. Montoya,et al. On the calculation of Misiurewicz patterns in one-dimensional quadratic maps , 1996 .
[20] Ioannis Andreadis,et al. On a topological closeness of perturbed Mandelbrot sets , 2010, Appl. Math. Comput..
[21] Xing-Yuan Wang,et al. The general quaternionic M-J sets on the mapping z : = zalpha+c (alpha in N) , 2007, Comput. Math. Appl..
[22] G. Álvarez,et al. Equivalence between subshrubs and chaotic bands in the Mandelbrot set , 2006 .
[23] Xing-yuan Wang,et al. Noise perturbed generalized Mandelbrot sets , 2008 .
[24] A. Douady. ALGORITHMS FOR COMPUTING ANGLES IN THE MANDELBROT SET , 1986 .
[25] G. Álvarez,et al. ALGORITHM FOR EXTERNAL ARGUMENTS CALCULATION OF THE NODES OF A SHRUB IN THE MANDELBROT SET , 2008 .
[26] F. Montoya,et al. Harmonic structure of one-dimensional quadratic maps , 1997 .
[27] J. Argyris,et al. On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .
[28] B. Mandelbrot. On the quadratic mapping z→z2-μ for complex μ and z: The fractal structure of its M set, and scaling , 1983 .
[29] Gonzalo Alvarez,et al. On periodic and chaotic regions in the Mandelbrot set , 2007 .
[30] G. Álvarez,et al. External arguments for the chaotic bands calculation in the Mandelbrot set , 2005 .
[31] Ioannis Andreadis,et al. On the influence of noise on the coexistence of chaotic attractors , 2000 .
[32] A. Douady,et al. Étude dynamique des polynômes complexes , 1984 .
[33] M. Misiurewicz,et al. Combinatorial patterns for maps of the interval , 1991 .
[34] F. Montoya,et al. Misiurewicz points in one-dimensional quadratic maps , 1996 .
[35] M. M. Rocha,et al. GEOMETRY OF THE ANTENNAS IN THE MANDELBROT SET , 2002 .
[36] Wang Xingyuan,et al. Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number , 2010 .