Calculation of the Structure of a Shrub in the Mandelbrot Set

We calculate the external arguments of the structure of any shrub in the Mandelbrot set. Before calculating, we revise, expand, and clarify some tools useful for this paper: harmonics, pseudoharmonics, the concept of structure, the structure of a shrub, and the ancestral route. Finally we present the main contribution of this paper, a three-step algorithm which allows us to calculate the structure of the shrub. In the first step, we use pseudoharmonics that were previously introduced by us, in order to calculate the first and last external arguments of a structural node. In the second step, starting from two general properties of the Misiurewicz points external arguments introduced here by us, we present a new method to calculate the intermediate external arguments. In the last step we introduce a third property that allows us to calculate the external arguments of the representatives of the branches emerging from the structural nodes.

[1]  G. Álvarez,et al.  Operating with External Arguments of Douady and Hubbard , 2007 .

[2]  Ioannis Andreadis,et al.  On perturbations of the Mandelbrot map , 2000 .

[3]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[4]  Xing-yuan Wang,et al.  RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS , 2008 .

[5]  Ruihong Jia,et al.  The Generalized Julia Set Perturbed by Composing Additive and Multiplicative Noises , 2009 .

[6]  Gonzalo Álvarez,et al.  Shrubs in the Mandelbrot Set Ordering , 2003, Int. J. Bifurc. Chaos.

[7]  X. Y. Wang,et al.  Noise-perturbed quaternionic Mandelbrot sets , 2009, Int. J. Comput. Math..

[8]  Gonzalo Álvarez,et al.  A general view of pseudoharmonics and pseudoantiharmonics to calculate external arguments of Douady and Hubbard , 2009, Appl. Math. Comput..

[9]  Zhenfeng Zhang,et al.  The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009, Appl. Math. Comput..

[10]  Xing-yuan Wang,et al.  RENDERING OF THE INSIDE STRUCTURE OF THE GENERALIZED M SET PERIOD BULBS BASED ON THE PRE-PERIOD , 2008 .

[11]  R. Helleman Nonlinear dynamics; Proceedings of the International Conference, New York, NY, December 17-21, 1979 , 1980 .

[12]  Ashish Negi,et al.  A new approach to dynamic noise on superior Mandelbrot set , 2008 .

[13]  G. Foussereau,et al.  Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .

[14]  J. Argyris,et al.  On the Julia set of the perturbed Mandelbrot map , 2000 .

[15]  Xu Zhang,et al.  Dynamics of the generalized M set on escape-line diagram , 2008, Appl. Math. Comput..

[16]  Xingyuan Wang,et al.  Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..

[17]  Zhang Zhenfeng,et al.  The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009 .

[18]  D. Schleicher Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials , 1994, math/9411238.

[19]  F. Montoya,et al.  On the calculation of Misiurewicz patterns in one-dimensional quadratic maps , 1996 .

[20]  Ioannis Andreadis,et al.  On a topological closeness of perturbed Mandelbrot sets , 2010, Appl. Math. Comput..

[21]  Xing-Yuan Wang,et al.  The general quaternionic M-J sets on the mapping z : = zalpha+c (alpha in N) , 2007, Comput. Math. Appl..

[22]  G. Álvarez,et al.  Equivalence between subshrubs and chaotic bands in the Mandelbrot set , 2006 .

[23]  Xing-yuan Wang,et al.  Noise perturbed generalized Mandelbrot sets , 2008 .

[24]  A. Douady ALGORITHMS FOR COMPUTING ANGLES IN THE MANDELBROT SET , 1986 .

[25]  G. Álvarez,et al.  ALGORITHM FOR EXTERNAL ARGUMENTS CALCULATION OF THE NODES OF A SHRUB IN THE MANDELBROT SET , 2008 .

[26]  F. Montoya,et al.  Harmonic structure of one-dimensional quadratic maps , 1997 .

[27]  J. Argyris,et al.  On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .

[28]  B. Mandelbrot On the quadratic mapping z→z2-μ for complex μ and z: The fractal structure of its M set, and scaling , 1983 .

[29]  Gonzalo Alvarez,et al.  On periodic and chaotic regions in the Mandelbrot set , 2007 .

[30]  G. Álvarez,et al.  External arguments for the chaotic bands calculation in the Mandelbrot set , 2005 .

[31]  Ioannis Andreadis,et al.  On the influence of noise on the coexistence of chaotic attractors , 2000 .

[32]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[33]  M. Misiurewicz,et al.  Combinatorial patterns for maps of the interval , 1991 .

[34]  F. Montoya,et al.  Misiurewicz points in one-dimensional quadratic maps , 1996 .

[35]  M. M. Rocha,et al.  GEOMETRY OF THE ANTENNAS IN THE MANDELBROT SET , 2002 .

[36]  Wang Xingyuan,et al.  Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number , 2010 .