Scalable Hyperparameter Selection for Latent Dirichlet Allocation
暂无分享,去创建一个
[1] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[2] Dean P. Foster,et al. Calibration and empirical Bayes variable selection , 2000 .
[3] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[4] Xiao-Li Meng,et al. The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .
[5] Murali Haran,et al. Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.
[6] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[7] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[8] Clint P. George. Latent Dirichlet Allocation: Hyperparameter selection and applications to electronic discovery , 2015 .
[9] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[10] Scott C. Schmidler,et al. α-Stable Limit Laws for Harmonic Mean Estimators of Marginal Likelihoods , 2012 .
[11] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[12] John D. Lafferty,et al. A correlated topic model of Science , 2007, 0708.3601.
[13] S. Walker. Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .
[14] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[15] D. Donoho,et al. Geometrizing Rates of Convergence, III , 1991 .
[16] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[17] Ajay Jasra,et al. Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .
[18] Galin L. Jones,et al. Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.
[19] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[20] John C. Nash,et al. Unifying Optimization Algorithms to Aid Software System Users: optimx for R , 2011 .
[21] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[22] C. Robert,et al. Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .
[23] Clint P. George,et al. Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model , 2017, J. Mach. Learn. Res..
[24] Yuhong Yang. Can the Strengths of AIC and BIC Be Shared , 2005 .
[25] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[26] Ming-Hui Chen. Importance-Weighted Marginal Bayesian Posterior Density Estimation , 1994 .
[27] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.