Gas41 links histone acetylation to H2A.Z deposition and maintenance of embryonic stem cell identity

[1]  T. Borggrefe,et al.  The histone variant H2A.Z in gene regulation , 2019, Epigenetics & Chromatin.

[2]  T. Cierpicki,et al.  GAS41 Recognizes Diacetylated Histone H3 through a Bivalent Binding Mode. , 2018, ACS chemical biology.

[3]  Wei Li,et al.  Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer , 2018, Genes & development.

[4]  S. Armstrong,et al.  ENL links histone acetylation to oncogenic gene expression in AML , 2017, Nature.

[5]  K. Miller,et al.  Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer , 2016, PLoS genetics.

[6]  Jacob D. Jaffe,et al.  H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs. , 2016, Cell reports.

[7]  Jean-Christophe Aude,et al.  Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells , 2015, Nature.

[8]  A. Gautam,et al.  STATE , 2016, Intell. Serv. Robotics.

[9]  Amit Verma,et al.  Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. , 2015, Molecular cell.

[10]  Wei Li,et al.  AF9 YEATS Domain Links Histone Acetylation to DOT1L-Mediated H3K79 Methylation , 2014, Cell.

[11]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[12]  Ming-Ming Zhou,et al.  Writers and readers of histone acetylation: structure, mechanism, and inhibition. , 2014, Cold Spring Harbor perspectives in biology.

[13]  Danny Reinberg,et al.  A double take on bivalent promoters. , 2013, Genes & development.

[14]  Kairong Cui,et al.  H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. , 2013, Cell stem cell.

[15]  Y. Dou,et al.  H2A.Z sets the stage in ESCs. , 2013, Cell stem cell.

[16]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[17]  Zhaoyu Li,et al.  Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation , 2012, Cell.

[18]  T. Kislinger,et al.  A Combination of H2A.Z and H4 Acetylation Recruits Brd2 to Chromatin during Transcriptional Activation , 2012, PLoS genetics.

[19]  Esther Rheinbay,et al.  H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions , 2012, Genome Biology.

[20]  H. Kimura,et al.  H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells , 2012, BMC Genomics.

[21]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[22]  Stuart H. Orkin,et al.  Chromatin Connections to Pluripotency and Cellular Reprogramming , 2011, Cell.

[23]  Hidenori Akutsu,et al.  DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time , 2011, Human Cell.

[24]  Richard A Young,et al.  Control of the Embryonic Stem Cell State , 2011, Cell.

[25]  T. Hori,et al.  Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant , 2010, Nucleic acids research.

[26]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[27]  G. Crabtree,et al.  Chromatin remodelling during development , 2010, Nature.

[28]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[29]  Kristie L. Rose,et al.  Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates , 2009, BMC Biology.

[30]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[31]  R. Young,et al.  H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment , 2008, Cell.

[32]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[33]  B. Panning,et al.  An RNAi Screen of Chromatin Proteins Identifies Tip60-p400 as a Regulator of Embryonic Stem Cell Identity , 2008, Cell.

[34]  J. Chrivia,et al.  The Chromatin Remodeling Protein, SRCAP, Is Critical for Deposition of the Histone Variant H2A.Z at Promoters* , 2007, Journal of Biological Chemistry.

[35]  D. Livingston,et al.  p21 transcription is regulated by differential localization of histone H2A.Z. , 2007, Genes & development.

[36]  P. Zuzarte,et al.  Monoubiquitylation of H2A.Z Distinguishes Its Association with Euchromatin or Facultative Heterochromatin , 2007, Molecular and Cellular Biology.

[37]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[38]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[39]  M. Washburn,et al.  Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. , 2006, Biochemistry.

[40]  D. Solter,et al.  From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research , 2006, Nature Reviews Genetics.

[41]  Stephan Sauer,et al.  Chromatin signatures of pluripotent cell lines , 2006, Nature Cell Biology.

[42]  M. Grunstein,et al.  Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. , 2006, Genes & development.

[43]  H. Cedar,et al.  G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis , 2006, Nature Cell Biology.

[44]  C. Bonifer,et al.  The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken , 2005, Nucleic acids research.

[45]  M. Tada,et al.  Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression , 2005, Molecular and Cellular Biology.

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  H. Niwa,et al.  Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. , 2002, Nucleic acids research.

[48]  P. Rathjen,et al.  Histone variant H2A.Z is required for early mammalian development , 2001, Current Biology.

[49]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[50]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[51]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[52]  H. Schöler,et al.  Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. , 1994, Developmental biology.

[53]  K. Okamoto,et al.  A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells , 1990, Cell.

[54]  R. B. Redmon,et al.  Identity , 2021, Notre Dame J. Formal Log..

[55]  J. Bonner,et al.  Differentiation , 1968, Nature.