Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli

[1]  K. Ackermann,et al.  Medically Important Fungi A Guide To Identification , 2016 .

[2]  D. Guo,et al.  Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense , 2013, BMC Genomics.

[3]  R. Hancock,et al.  Expression of an Engineered Heterologous Antimicrobial Peptide in Potato Alters Plant Development and Mitigates Normal Abiotic and Biotic Responses , 2013, PloS one.

[4]  J. Fox Antimicrobial peptides stage a comeback , 2013, Nature Biotechnology.

[5]  Marilyn A. Anderson,et al.  Properties and mechanisms of action of naturally occurring antifungal peptides , 2013, Cellular and Molecular Life Sciences.

[6]  A. Mitra,et al.  Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus , 2012, European Journal of Plant Pathology.

[7]  Bingzhi Huang,et al.  The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4 , 2011, European Journal of Plant Pathology.

[8]  O. Franco,et al.  Antibacterial Peptides from Plants: What They Are and How They Probably Work , 2011, Biochemistry research international.

[9]  D. Shah,et al.  Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt , 2010, GM crops.

[10]  S. Woodward,et al.  Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms , 2010, Journal of Industrial Microbiology & Biotechnology.

[11]  M. Rep,et al.  Pathogen profile update: Fusarium oxysporum. , 2009, Molecular plant pathology.

[12]  S. Slavov,et al.  Constitutive Expression of a Radish Defensin Gene Rs-AFP2 in Tomato Increases the Resisstance to Fungal Pathogens , 2009 .

[13]  Hyong Woo Choi,et al.  Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance1[C][OA] , 2008, Plant Physiology.

[14]  Seogchan Kang,et al.  In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. , 2007, Fungal genetics and biology : FG & B.

[15]  James B. Hicks,et al.  A plant DNA minipreparation: Version II , 1983, Plant Molecular Biology Reporter.

[16]  S. V. Oard,et al.  Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi , 2006, Plant Cell Reports.

[17]  Kanniah Rajasekaran,et al.  Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. , 2005, Plant biotechnology journal.

[18]  Chiu-Ping Cheng,et al.  Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack , 2005, Planta.

[19]  Y. Sheng,et al.  Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Séguin,et al.  Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. , 2003, Tree physiology.

[21]  Byoung Ryong Jeong,et al.  Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. , 2003, Phytochemistry.

[22]  T. Ganapathi,et al.  MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana , 2003, Planta.

[23]  T. Cleveland,et al.  Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. , 2001, Journal of agricultural and food chemistry.

[24]  Cleveland,et al.  Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. , 2000, Plant science : an international journal of experimental plant biology.

[25]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[26]  T. Cleveland,et al.  Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. , 1998, Canadian journal of microbiology.

[27]  H. Löffler,et al.  Studies on Fusarium‐Gladiolus Interactions , 1998 .

[28]  H. Löffler,et al.  In-vitro selection for Fusarium-resistance in Gladiolus , 1997 .

[29]  P. Epple,et al.  Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. , 1997, The Plant cell.

[30]  S. Tanksley,et al.  The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. , 1997, The Plant cell.

[31]  M. Hahn,et al.  Morphogenesis and mechanisms of penetration by plant pathogenic fungi. , 1996, Annual review of phytopathology.

[32]  J C Sanford,et al.  Optimizing the biolistic process for different biological applications. , 1993, Methods in enzymology.

[33]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[34]  D. Larone Medically Important Fungi: A Guide to Identification , 1976 .

[35]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .