Four Most Pathogenic Superfamilies of Insect Pests of Suborder Sternorrhyncha: Invisible Superplunderers of Plant Vitality

Simple Summary Changing environmental parameters with the development of global warming and the growing anthropogenic influence lead to the spread of insect pests in new habitats, abundant in their host plants. While remaining visually undetected, representatives of the hemipteran insect pests in the suborder Sternorrhyncha cause large-scale economic losses. In this review, we consider the main pathogenic superfamilies of the suborder and present new methods of dealing with them that meet the requirements for modern insecticides and take into account the need for the development of insecticides that do not cause global warming. We solve the problem of environmental pollution caused by modern insecticides by proposing the use of oligonucleotide insecticides based on conservative fragments of genomes of insect pests which slow down the emergence of resistance to the applied insecticides. Our proposed approach opens up new horizons for both safe and effective insect pest control. Abstract Sternorrhyncha representatives are serious pests of agriculture and forestry all over the world, primarily causing damage to woody plants. Sternorrhyncha members are vectors for the transfer of a large number of viral diseases, and subsequently, the host plant weakens. Additionally, many are inherent in the release of honeydew, on which fungal diseases develop. Today, an innovative approach is needed to create new and effective ways to control the number of these insects based on environmentally friendly insecticides. Of particular relevance to such developments is the need to take into account the large number of organisms living together with insect pests in this group, including beneficial insects. Practically without changing their location on their host plant, they adopted to be more invisible and protected due to their small size, symbiosis with ants, the ability to camouflage with a leaf, and moderately deplete plants and others, rarely leading them to death but still causing substantial economic loss in the subtropics and tropics. Due to the lack of presence in the literature, this review fills in this pesky spot by examining (on the example of distinct species from four superfamilies) the characteristic adaptations for this suborder and the chemical methods of combating these insects that allow them to survive in various environmental conditions, suggesting new and highly promising ways of using olinscides for plant protection against Sternorrhyncha members.

[1]  I. Novikov,et al.  To bee or not to bee: creating DNA insecticides to replace non-selective organophosphate insecticides for use against the soft scale insect Ceroplastes japonicus Green , 2020, Journal of Plant Protection Research.

[2]  Refat Z Useinov,et al.  A breakthrough in the efficiency of contact DNA insecticides: rapid high mortality rates in the sap-sucking insects Dynaspidiotus britannicus Comstock and Unaspis euonymi Newstead , 2020, Journal of Plant Protection Research.

[3]  A. Omelchenko,et al.  DNA insecticides: The effect of concentration on non-target plant organisms such as wheat (Triticum aestivum L.) , 2019, Journal of Plant Protection Research.

[4]  Refat Z Useinov,et al.  Oligonucleotide Insecticides for Green Agriculture: Regulatory Role of Contact DNA in Plant–Insect Interactions , 2022, International journal of molecular sciences.

[5]  N. Stork,et al.  Scientists' warning on climate change and insects , 2022, Ecological Monographs.

[6]  P. Grodzicki,et al.  Insecticide and fungicide effect on thermal and olfactory behavior of bees and their disappearance in bees' tissues. , 2022, Environmental toxicology and pharmacology.

[7]  Amit Kumar Sharma,et al.  Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review , 2022, Frontiers in Microbiology.

[8]  F. Manzoor,et al.  Honey bee losses and pesticides threat: an Asian perspective , 2022, Journal of Apicultural Research.

[9]  A. Weigand,et al.  First systematic inventory of the jumping plant lice of Luxembourg (Hemiptera, Sternorrhyncha, Psylloidea) , 2022, Biodiversity data journal.

[10]  L. D. Ortega-Arenas,et al.  Descripción de dos nuevas especies de Trialeurodes (Cockerell) (Homoptera: Aleyrodidae) y clave para las especies de México , 2022, ACTA ZOOLÓGICA MEXICANA (N.S.).

[11]  Assia Mouhand,et al.  2022 In Vitro Biology Meeting, June 4–7, San Diego California , 2022, In Vitro Cellular & Developmental Biology - Animal.

[12]  Agnieszka Hołodyńska-Kulas,et al.  Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland , 2022, Foods.

[13]  S. Belmain,et al.  Field margins and botanical insecticides enhance Lablab purpureus yield by reducing aphid pests and supporting natural enemies , 2022, Journal of applied entomology = Zeitschrift fur angewandte Entomologie.

[14]  Plant Posters , 2022, In vitro cellular & developmental biology. Animal.

[15]  Jurabek Yakhyoev,et al.  BIOECOLOGY AND HARM OF WHITEFLIES AND PEST RISK ANALYSIS , 2022, The American Journal of Agriculture and Biomedical Engineering.

[16]  M. A. Bashir,et al.  Pesticides Xenobiotics in Soil Ecosystem and Their Remediation Approaches , 2022, Sustainability.

[17]  J. Serrão,et al.  Side-effects of pesticides on non-target insects in agriculture: a mini-review , 2022, The Science of Nature.

[18]  P. Ndakidemi,et al.  Characterization of Farmer’s knowledge and management practices of papaya mealybug Paracoccus magnatus (Hemiptera: Pseudococcidae) in Tanzania , 2022, Saudi journal of biological sciences.

[19]  D. Martins,et al.  Diversity, distribution and host plants of armored scale insects (Hemiptera: Diaspididae) in Espírito Santo, Brazil , 2022, Biota Neotropica.

[20]  A. Bednarska,et al.  Physiological and biochemical response of the solitary bee Osmia bicornis exposed to three insecticide-based agrochemicals. , 2021, Ecotoxicology and environmental safety.

[21]  V. Oberemok,et al.  An innovative method of Diaspis echinocacti Bouche control using DNA insecticide onOpuntia ficus-indica (L.) Mill. in the Nikitsky Botanical Garden, Crimea , 2021, South of Russia: ecology, development.

[22]  J. Vela,et al.  Phenology and management of the white mango scale, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae), in Southern Spain , 2021 .

[23]  M. Mishra,et al.  Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity—A Case for Next-Generation Control Strategies of Whiteflies , 2021, Insects.

[24]  E. Esimbekova,et al.  Pesticides: formulants, distribution pathways and effects on human health – a review , 2021, Toxicology reports.

[25]  D. Burckhardt,et al.  Exotic Psyllids and Exotic Hosts: Accumulation of Nonnative Psylloidea in North America (Hemiptera) , 2021, Annals of the Entomological Society of America.

[26]  D. E. Nava,et al.  Outbreak of Lauritrioza alacris (Flor, 1861) (Hemiptera, Triozidae) in a commercial plantation of bay laurel (Laurus nobilis L., Lauraceae) in Brazil , 2021 .

[27]  D. Ouvrard,et al.  An updated classification of the jumping plant-lice (Hemiptera: Psylloidea) integrating molecular and morphological evidence , 2021 .

[28]  Ali Al-Jahdhami,et al.  Two new records of the genus Icerya Signoret, 1875 (Hemiptera, Coccomorpha, Monophlebidae) from Oman , 2021, Journal of Insect Biodiversity and Systematics.

[29]  D. Shapiro-Ilan,et al.  Bemisia tabaci on Vegetables in the Southern United States: Incidence, Impact, and Management , 2021, Insects.

[30]  D. Burckhardt,et al.  Molecular, morphometric and digital automated identification of three Diaphorina species (Hemiptera: Liviidae) , 2021, Bulletin of Entomological Research.

[31]  X. Wang,et al.  Development and Area-Wide Application of Biological Control using the Parasitoid Aphidius gifuensis Against Myzus persicae in China , 2021 .

[32]  Claudia Bienvenido,et al.  Phenology and management of the white mango scale, Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae), in Southern Spain , 2021, Phytoparasitica.

[33]  A. Khan,et al.  Chrysanthemum Production in Bangladesh: Significance the Insect Pests and Diseases Management: A Review , 2021 .

[34]  R. Day,et al.  Crop losses and economic impact associated with papaya mealybug (Paracoccus marginatus) infestation in Kenya , 2020, International Journal of Pest Management.

[35]  P. Cudlín,et al.  Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring , 2020, Sustainability.

[36]  R. Einspanier,et al.  Effects of selected insecticidal substances on mRNA transcriptome in larvae of Apis mellifera. , 2020, Pesticide biochemistry and physiology.

[37]  J. Brunet,et al.  Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. , 2020, Ecotoxicology and environmental safety.

[38]  Jeroen J. L. Candel,et al.  Game-changing potential of the EU’s Farm to Fork Strategy , 2020, Nature Food.

[39]  F. Muth,et al.  Do novel insecticides pose a threat to beneficial insects? , 2020, Proceedings of the Royal Society B.

[40]  A. Nissinen,et al.  Spreading of Trioza apicalis and development of “ Candidatus Liberibacter solanacearum” infection on carrot in the field conditions , 2020, Annals of Applied Biology.

[41]  J. Kreuze,et al.  A temperature-driven model for potato yellow vein virus transmission efficacy by Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) , 2020, Virus research.

[42]  Diying Huang,et al.  Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera) , 2020, Scientific Reports.

[43]  David A. Rasmussen,et al.  Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus , 2020, Viruses.

[44]  T. Gokturk,et al.  The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria , 2020, Alınteri Zirai Bilimler Dergisi.

[45]  Juan Shi,et al.  Predicting the Potential Global Geographical Distribution of Two Icerya Species under Climate Change , 2020, Forests.

[46]  V. Farina,et al.  First record of Icerya seychellarum and confirmed occurrence of Aulacaspis tubercularis (Hemiptera: Coccomorpha) in Italy , 2020, Phytoparasitica.

[47]  D. Burckhardt,et al.  Neotropical jumping plant-lice (Hemiptera, Psylloidea) associated with plants of the tribe Detarieae (Leguminosae, Detarioideae). , 2020, Zootaxa.

[48]  I. Malenovský,et al.  DNA barcoding of pear psyllids (Hemiptera: Psylloidea: Psyllidae), a tale of continued misidentifications , 2020, Bulletin of Entomological Research.

[49]  A. Seni Sucking Pests Menace and Their Management on Floricultural Crops , 2020, Advances in Pest Management in Commercial Flowers.

[50]  D. Klich,et al.  Pesticides and conservation of large ungulates: Health risk to European bison from plant protection products as a result of crop depredation , 2020, PloS one.

[51]  B. C. Misaka,et al.  Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Colonizing Sweet Potato and Cassava in South Sudan , 2019, Insects.

[52]  Kelvin O. Yoro,et al.  CO2 emission sources, greenhouse gases, and the global warming effect , 2020 .

[53]  Wilson Nwankwo,et al.  CLIMATIC CHANGE AND PESTICIDES USAGE: A BRIEF REVIEW OF THEIR IMPLICATIVE RELATIONSHIP , 2020 .

[54]  Philip A. Stansly,et al.  Citrus pests in a global world , 2020 .

[55]  Y. Picó,et al.  Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects , 2019, Proceedings of the National Academy of Sciences.

[56]  J. Koricheva,et al.  Responses of forest insect pests to climate change: not so simple. , 2019, Current opinion in insect science.

[57]  R. Pavela,et al.  Essential oils as active ingredients of botanical insecticides against aphids , 2019, Journal of Pest Science.

[58]  J. Giliomee,et al.  An Assessment of the Seychelles Scale Icerya seychellarum (Westwood) as a Potential Insect of Economic Importance in South Africa , 2019, African Entomology.

[59]  M. Saicharan,et al.  A Brief Review on Chrysanthemum aphid: Macrosiphoniella sanbornii (Gillette) and its Management , 2019, International Journal of Current Microbiology and Applied Sciences.

[60]  G. P. Gangwar,et al.  Effect of Weather Parameters on Population Dynamics of Mustard Aphid , 2019, International Journal of Current Microbiology and Applied Sciences.

[61]  A. Kubyshkin,et al.  DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection , 2019, Scientific Reports.

[62]  Ernesto Estrada,et al.  Mathematical modelling for sustainable aphid control in agriculture via intercropping , 2019, Proceedings of the Royal Society A.

[63]  A. Jacobson,et al.  Invasive cereal aphids of North America: Biotypes, genetic variation, management, and lessons learned , 2019 .

[64]  Md. jahangir Alam,et al.  Bio-efficacy of some bio-pesticides against maize aphid, Rhopalosiphum maidis; a threatening pest of maize , 2019, Journal of Science Technology and Environment Informatics.

[65]  R. Meena,et al.  Soil and Environmental Management , 2019, Sustainable Management of Soil and Environment.

[66]  Sumei Chen,et al.  Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress , 2018, BMC plant biology.

[67]  Anamika Sharma,et al.  Checklist and comments on the jumping plant-lice (Hemiptera: Psylloidea) from the Indian subcontinent. , 2018, Zootaxa.

[68]  K. Gaston,et al.  Shifting daylength regimes associated with range shifts alter aphid‐parasitoid community dynamics , 2018, Ecology and evolution.

[69]  A. Fuentes,et al.  Genetic variation and population structure of Diaphorina citri using cytochrome oxidase I sequencing , 2018, PloS one.

[70]  A. Dixon,et al.  Aphids (Homoptera: Aphididae) on Winter Wheat: Predicting Maximum Abundance of Metopolophium dirhodum , 2018, Journal of Economic Entomology.

[71]  Volodymyr V Oberemok,et al.  A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey , 2018, Molecules.

[72]  C. Bartlett,et al.  The Diversity of the True Hoppers (Hemiptera: Auchenorrhyncha) , 2018 .

[73]  N. Hardy The Biodiversity of Sternorrhyncha: Scale Insects, Aphids, Psyllids, and Whiteflies , 2018 .

[74]  E. Rebek,et al.  Banker Plants for Aphid Biological Control in Greenhouses , 2018 .

[75]  Tatsuya Konishi,et al.  Large-Scale Oligonucleotide Manufacturing , 2018 .

[76]  S. Katayama,et al.  Liquid-Phase Synthesis of Oligonucleotides , 2018 .

[77]  M. Sekine,et al.  Synthesis of Therapeutic Oligonucleotides , 2018, Springer Singapore.

[78]  G. Kaur,et al.  Biodiversity of insect and mite pests infesting fig in the Indian Punjab , 2017 .

[79]  Emily A. Martin,et al.  Combined effects of agrochemicals and ecosystem services on crop yield across Europe. , 2017, Ecology letters.

[80]  Jinpeng Liu,et al.  Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs , 2017, Proceedings of the Royal Society B: Biological Sciences.

[81]  A. Singla,et al.  Pesticide Residues in Food Grains, Vegetables and Fruits: A Hazard to Human Health , 2017 .

[82]  Aiming Wang,et al.  ICTV Virus Taxonomy Profile: Potyviridae , 2017, The Journal of general virology.

[83]  Mansour Ramzi,et al.  Key scale insects (Hemiptera: Coccoidea) of high economic importance in a Mediterranean area: host plants, bio-ecological characteristics, natural enemies and pest management strategies – a review , 2017 .

[84]  M. Syfert,et al.  Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives , 2017, PloS one.

[85]  R. Mushtaq,et al.  Efficacy of Various Insecticides against Pear Psylla (Psylla pyricola Foerster) on Pear in Kashmir , 2017 .

[86]  Ki‐Hyun Kim,et al.  Exposure to pesticides and the associated human health effects. , 2017, The Science of the total environment.

[87]  S. M. Mansouri,et al.  Some bioecological aspects of the rose aphid, Macrosiphum rosae (Hemiptera: Aphididae) and its natural enemies , 2016 .

[88]  D. Hall,et al.  Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae) , 2016, PeerJ.

[89]  Céline Bellard,et al.  Massive yet grossly underestimated global costs of invasive insects , 2016, Nature Communications.

[90]  S. Freed,et al.  Monitoring of insecticide resistance in Diaphorina citri Kuwayama (Hemiptera: Psyllidae) from citrus groves of Punjab, Pakistan , 2016 .

[91]  J. Kollár,et al.  First record of the cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – short communication , 2016 .

[92]  D. Paini,et al.  Global threat to agriculture from invasive species , 2016, Proceedings of the National Academy of Sciences.

[93]  J. Szwedo The unity, diversity and conformity of bugs (Hemiptera) through time , 2016, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[94]  A. Emam Biological Control of the Chrysanthemum Aphid, Macrosiphoniella sanborni (Gillete) by Release Coccinella septempunctata l. on Chrysanthemum Plants , 2016 .

[95]  Douglass R. Miller,et al.  ScaleNet: a literature-based model of scale insect biology and systematics , 2016, Database J. Biol. Databases Curation.

[96]  Michael J. Brewer,et al.  Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America , 2016, Journal of integrated pest management.

[97]  S. Gurung,et al.  Efficacy of entomopathogens for control of blue pumpkin beetle (Aulacophora nigripennis motschulsky, 1857) in sponge gourd ( Luffacylindrica) under laboratory condition at Paklihawa, Nepal , 2016 .

[98]  Anne Strauss,et al.  Encyclopedia Of Insects , 2016 .

[99]  C. Malumphy NEW DATA ON THE WHITEFLIES (INSECTA: HEMIPTERA: ALEYRODIDAE) OF MONTENEGRO, INCLUDING THREE SPECIES NEW FOR THE COUNTRY , 2015 .

[100]  R. Gilbertson,et al.  Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. , 2015, Annual review of virology.

[101]  E. C. Chávez,et al.  Insecticide-Resistance Ratios of Three Populations of Bactericera cockerelli (Hemiptera: Psylloidea: Triozidae) in Regions of Northern Mexico , 2015 .

[102]  D. Ouvrard,et al.  Host-plant leaps versus host-plant shuffle: a global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea) , 2015 .

[103]  J. Bloomquist,et al.  Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. , 2015, Pest management science.

[104]  J. Deng,et al.  DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China , 2015, Bulletin of Entomological Research.

[105]  D. Żyła,et al.  New fossil taxa of Monophlebidae (Sternorrhyncha: Coccoidea) from Baltic amber , 2015 .

[106]  A. S. Zaitsev,et al.  Influence of DNA oligonucleotides used as insecticides on biochemical parameters of Quercus robur and Malus domestica. , 2015 .

[107]  B. Lozowicka Health risk for children and adults consuming apples with pesticide residue. , 2015, The Science of the total environment.

[108]  L. Boykin,et al.  Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. , 2014, Pest management science.

[109]  Thomas H. Spreen,et al.  An Economic Assessment of the Impact of Huanglongbing on Citrus Tree Plantings in Florida , 2014 .

[110]  P. V. van Bekkum,et al.  Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. , 2014, Virus research.

[111]  M. Skaljac,et al.  Genetic variation of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), among populations from Serbia and neighbouring countries, as inferred from COI sequence variability , 2014, Bulletin of Entomological Research.

[112]  M. Ragaei,et al.  NANOTECHNOLOGY FOR INSECT PEST CONTROL , 2014 .

[113]  D. Bebber,et al.  Crop pests and pathogens move polewards in a warming world , 2013 .

[114]  M. Hoddle,et al.  Post release evaluation of Rodolia cardinalis (Coleoptera: Coccinellidae) for control of Icerya purchasi (Hemiptera: Monophlebidae) in the Galapagos Islands , 2013 .

[115]  T. Sparks,et al.  Insecticide discovery: an evaluation and analysis. , 2013, Pesticide biochemistry and physiology.

[116]  Jason D. Hill,et al.  Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions , 2013, PloS one.

[117]  M. Bonner,et al.  Increased cancer burden among pesticide applicators and others due to pesticide exposure , 2013, CA: a cancer journal for clinicians.

[118]  L. Stelinski,et al.  Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. , 2013, Annual review of entomology.

[119]  S. Honore,et al.  Pioneer Evaluation of the Possible Side Effects of the Dna Insecticides on Wheat (Triticum Aestivum L.) , 2013 .

[120]  S. Stamenković,et al.  EFFICACY OF INSECTICIDES OF NATURAL ORIGIN IN WHITEFLY (TRIALEURODES VAPORARIORUM) CONTROL IN TOMATO , 2012 .

[121]  G. Sabino,et al.  Environmental exposure to organophosphate pesticides: assessment of endocrine disruption and hepatotoxicity in pregnant women. , 2012, Ecotoxicology and environmental safety.

[122]  F. Porcelli,et al.  The psyllid Macrohomotoma gladiata Kuwayama, 1908 (Hemiptera: Psylloidea: Homotomidae): a Ficus pest recently introduced in the EPPO region , 2012 .

[123]  T. Spreen,et al.  Economic Impacts of Citrus Greening (HLB) in Florida, 2006/07–2010/11 , 2012, EDIS.

[124]  M. Hoddle,et al.  Monitoring the effects of Rodolia cardinalis on Icerya purchasi populations on the Galapagos Islands , 2012, BioControl.

[125]  P. Toth Antisense therapy and emerging applications for the management of dyslipidemia. , 2011, Journal of clinical lipidology.

[126]  H. Heinzen,et al.  Detection of Pesticides in Active and Depopulated Beehives in Uruguay , 2011, International journal of environmental research and public health.

[127]  Matthias Liess,et al.  Climate change, agricultural insecticide exposure, and risk for freshwater communities. , 2011, Ecological applications : a publication of the Ecological Society of America.

[128]  J. Navas-Castillo,et al.  Emerging virus diseases transmitted by whiteflies. , 2011, Annual review of phytopathology.

[129]  T. Kondo,et al.  Establishment and host records of Icerya aegyptiaca (Douglas) (Hemiptera: Coccoidea: Monophlebidae) in the Sakishima Islands of the Ryukyu Archipelago, Japan, with notes on its worldwide distribution , 2011 .

[130]  Andrew M. Liebhold,et al.  Historical Accumulation of Nonindigenous Forest Pests in the Continental United States , 2010 .

[131]  D. Gerling,et al.  Diapause and its regulation in the whitefly Trialeurodes lauri , 2010, Bulletin of Entomological Research.

[132]  G. Ketoh,et al.  Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. , 2010, Pest management science.

[133]  I. Pen,et al.  Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems , 2010, Biological reviews of the Cambridge Philosophical Society.

[134]  N. Gerardo,et al.  Aphid reproductive investment in response to mortality risks , 2010, BMC Evolutionary Biology.

[135]  A. K. Tank,et al.  LESSONS FROM HUANGLONGBING MANAGEMENT IN SÃO PAULO STATE, BRAZIL , 2010 .

[136]  G. Pellizzari,et al.  Scales (Hemiptera, Superfamily Coccoidea). Chapter 9.3 , 2010 .

[137]  A. C. d’acier,et al.  Aphids (Hemiptera, Aphididae) Chapter 9.2 , 2010 .

[138]  G. Devine,et al.  Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China , 2010 .

[139]  D. Roy,et al.  Scales (Hemiptera, Superfamily Coccoidea). , 2010 .

[140]  M. Seagraves Aphids as Crop Pests , 2009 .

[141]  D. Gerling,et al.  Bionomics of Encarsia scapeata Rivnay (Hymenoptera: Aphelinidae), tritrophic relationships and host-induced diapause , 2009 .

[142]  T. J. Henry Biodiversity of Heteroptera , 2009 .

[143]  T. Kondo,et al.  Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea) , 2009 .

[144]  D. Rubiales,et al.  First report of cottony‐cushion scale (Icerya purchasi) on red berried mistletoe (Viscum cruciatum) , 2009 .

[145]  P. Gullan,et al.  Sternorrhyncha: (Jumping Plant-Lice, Whiteflies, Aphids, and Scale Insects) , 2009 .

[146]  T. M. Milek,et al.  A CHECK-LIST OF WHITEFLIES (INSECTA: HEMIPTERA: ALEYRODIDAE) OF CROATIA , 2008 .

[147]  P. Gullan,et al.  Identification guide to species in the scale insect tribe Iceryini (Coccoidea: Monophlebidae) , 2008 .

[148]  W. Kurz,et al.  Mountain pine beetle and forest carbon feedback to climate change , 2008, Nature.

[149]  I. Denholm,et al.  Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey , 2008 .

[150]  L. Cook,et al.  Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* , 2007 .

[151]  W. F. Tjallingii,et al.  Molecular sabotage of plant defense by aphid saliva , 2007, Proceedings of the National Academy of Sciences.

[152]  Mushtaq Ahmad Potentiation/Antagonism of Pyrethroids with Organophosphate Insecticides inBemisia tabaci (Homoptera: Aleyrodidae) , 2007, Journal of economic entomology.

[153]  N. Boonham,et al.  Morphological and molecular evidence supporting the validity of Trialeurodes lauri and T. ricini (Hemiptera: Sternorrhyncha: Aleyrodidae). , 2007 .

[154]  J. Trumble,et al.  Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli) , 2007 .

[155]  C. Braendle,et al.  Wing dimorphism in aphids , 2006, Heredity.

[156]  Mahantesh,et al.  STANDARDIZATION OF AGRO-TECHNIQUES FOR PRODUCTION OF CHRYSANTHEMUM UNDER LOW COST POLYHOUSE , 2006 .

[157]  R. Blackman,et al.  Aphids on the world's herbaceous plants and shrubs. Volume 1: host lists and keys. Volume 2: the aphids. , 2006 .

[158]  G. Jahn,et al.  Effect of Nitrogen Fertilizer on the Intrinsic Rate of Increase of Hysteroneura setariae (Thomas) (Homoptera: Aphididae) on Rice (Oryza sativa L.) , 2005 .

[159]  E. Roditakis,et al.  Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. , 2005, Pest management science.

[160]  Douglass R. Miller,et al.  Introduced scale insects (Hemiptera: Coccoidea) of the United States and their impact on U.S. agriculture , 2005 .

[161]  Y. Ben-Dov A systematic catalogue of the scale insect family Margarodidae (Hemiptera: Coccoidea) of the world. , 2005 .

[162]  D. Miller,et al.  A systematic catalogue of the Cerococcidae, Halimococcidae, Kermesidae, Micrococcidae, Ortheziidae, Phenacoleachiidae, Phoenicococcidae, and Stictococcidae (Hemiptera: Coccoidea) of the world. , 2005 .

[163]  T. New Book Review: A Systematic Catalogue of the scale insect family Margarodidae (Hemiptera: Coccoidea) of the World. Ben-Dov Y. (2005). Intercept Ltd., Wimborne, U.K. 400 pp. Hardback. ISBN 1-84585-000-9, Sterling £40.00, €57.00, US$75.00. A Systematic Catalogue of the Cerococcidae, Halimococcidae, Kerm , 2005, Journal of Insect Conservation.

[164]  David R. Jones Plant Viruses Transmitted by Whiteflies , 2003, European Journal of Plant Pathology.

[165]  D. Hollis Australian Psylloidea: jumping plantlice and lerp insects. , 2004 .

[166]  F. Bianchi,et al.  The Effect of the Area and Configuration of Hibernation Sites on the Control of Aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in Agricultural Landscapes: A Simulation Study , 2003 .

[167]  E. Seemüller,et al.  First Report of Cacopsylla picta as a Vector of Apple Proliferation Phytoplasma in Germany. , 2003, Plant disease.

[168]  D. Ouvrard,et al.  Scale Insects: Major Pests and Management , 2002 .

[169]  R. Hull CHAPTER 11 – Transmission 1: By Invertebrates, Nematodes and Fungi , 2002 .

[170]  M. Blackburn,et al.  Timing and ecdysteroid regulation of the molt in last instar greenhouse whiteflies (Trialeurodes vaporariorum). , 2002, Journal of insect physiology.

[171]  Thomas J. Henneberry,et al.  History, current status and collaborative research projects for Bemisia tabaci , 2001 .

[172]  Bruce A. McCarl,et al.  An Investigation of the Relationship between Pesticide Usage and Climate Change , 2001 .

[173]  J. Etienne,et al.  Biological control of Diaphorina citri (Hemiptera: Psyllidae) in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae) , 2001 .

[174]  N. Magan,et al.  Use of hyphomycetous fungi for managing insect pests. , 2001 .

[175]  J. Rosenheim,et al.  Cotton aphid emerges as major pest in SJV cotton. , 2000 .

[176]  D. Mifsud,et al.  The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean Basin , 2000, Bulletin of Entomological Research.

[177]  T. J. Stevens,et al.  An Economic Comparison of Biological and Conventional Control Strategies for Whiteflies (Homoptera: Aleyrodidae) in Greenhouse Poinsettias , 2000, Journal of economic entomology.

[178]  S. Mannaa Monitoring of insecticide sensitivity change in different developmental stages of the cotton whitefly, Bemisia tabaci (Genn.) to certain insecticides. , 2000 .

[179]  R. Gilbertson,et al.  Widespread Occurrence of Tomato Geminiviruses in Brazil, Associated with the New Biotype of the Whitefly Vector. , 1998, Plant disease.

[180]  J. C. Faria,et al.  A New Geminivirus Associated with Tomato in the State of São Paulo, Brazil. , 1997, Plant disease.

[181]  W. Perry,et al.  Response of soil and leaf litter microarthropods to forest application of diflubenzuron , 1997 .

[182]  A. Devonshire,et al.  Insecticide resistance in Bemisia tabaci - current status and implications for management. , 1996 .

[183]  P. Markham,et al.  THE TRANSMISSION OF GEMINIVIRUSES BY BEMISIA TABACI , 1994 .

[184]  F. Leclant,et al.  Aphids (Hemiptera : Aphididae) , 1994 .

[185]  Y. Abdel-Aal,et al.  Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera: Aphididae) from midsouth cotton. , 1992 .

[186]  R. Carruthers,et al.  Fungi as naturally occurring entomopathogens. , 1990 .

[187]  J. Jeyaratnam Acute pesticide poisoning: a major global health problem. , 1990, World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales.

[188]  I. Hodkinson The psyllids (Homoptera: Psylloidea) of the Oriental Zoogeographical Region: an annotated check-list , 1986 .

[189]  M. Caruthers,et al.  Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis , 1981 .

[190]  .. Shuja-Uddin New record of Ephedrus campestris Stary (Aphidiidae: Hymenoptera) from India , 1978 .

[191]  G. Ramaseshiah,et al.  Recent records of Aphidiids (Hym.: Aphidiidae) in India. , 1970 .

[192]  A. Michelson,et al.  Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage , 1955 .

[193]  Аlijon Karimovich Khusanov,et al.  ON THE SPECIALIZATION AND COEVOLUTION OF JUICES IN FOOD PLANTS (HOMOPTERA, APHIDINEA). , 2022, Theoretical & Applied Science.