Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers

A new time-domain Fourier-Galerkin (TDFG) theory is developed to simulate the near-field, far-field and spectral characteristics of surface-emitting photonic-crystal distributed-feedback (SE PCDFB) lasers. It is found that a properly-designed two-dimensional hexagonal or square-lattice grating should efficiently couple the output into a single SE mode that retains coherence for aperture diameters of up to /spl ap/1 mm. We identify lattice structures and precise conditions under which all components of the transverse electric or transverse magnetic polarized optical fields constructively interfere to produce a single-lobed, near-diffraction-limited circular output beam. The TDFG simulations predict that quantum efficiencies as high as 30% (60% if reflectors are built into the waveguide structure) should be attainable. A surprising conclusion is that diffractive coupling into the surface-emitting direction must be relatively weak, in order to assure selection of the desired symmetric in-phase mode. Furthermore, gain media with a moderate linewidth enhancement factor should produce the best SE PCDFB performance, whereas edge emitters nearly always benefit from a very small value.

[1]  D. Botez,et al.  METAL-GRATING-OUTCOUPLED SURFACE-EMITTING DISTRIBUTED-FEEDBACK DIODE LASERS , 1996 .

[2]  David F. Welch,et al.  Analysis of second-order gratings , 1989 .

[3]  Robert Amantea,et al.  Mode discrimination in distributed feedback grating surface emitting lasers containing a buried second-order grating , 1991 .

[4]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[5]  Mattias Beck,et al.  Surface-emitting 10.1 mum quantum-cascade distributed feedback lasers , 1999 .

[6]  D. Scifres,et al.  Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides - I , 1976, IEEE Journal of Quantum Electronics.

[7]  S. H. Macomber,et al.  Surface‐emitting distributed feedback semiconductor laser , 1987 .

[8]  G. Dente,et al.  Low confinement factors for suppressed filaments in semiconductor lasers , 2001 .

[9]  Christopher L. Felix,et al.  Mid-infrared angled-grating distributed feedback laser , 2000 .

[10]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[11]  Dongwook Park,et al.  Mode analysis of DFB SE lasers , 1996 .

[12]  Igor Vurgaftman,et al.  Photonic-crystal distributed-feedback lasers , 2001 .

[13]  Masaya Notomi,et al.  Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps , 2001 .

[14]  Christopher L. Felix,et al.  Far-field characteristics of mid-infrared angled-grating distributed feedback lasers , 2000 .

[15]  D. Welch,et al.  Theory of grating-confined broad-area lasers , 1998 .

[16]  S. Macomber Nonlinear analysis of surface-emitting distributed feedback lasers , 1990 .

[17]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[18]  Volker Wittwer,et al.  A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure , 2000 .

[19]  T. Tanbun-Ek,et al.  Gain characteristics of 1.55-μm high-speed multiple-quantum-well lasers , 1995, IEEE Photonics Technology Letters.

[20]  William Streifer,et al.  High efficiency, high uniformity, grating coupled surface emitting lasers , 1990 .

[21]  N. Dutta,et al.  Linewidth enhancement factor in strained quantum well lasers , 1990 .

[22]  Jerry R. Meyer,et al.  Photonic-crystal distributed-feedback quantum cascade lasers , 2002 .

[23]  Andrew Sarangan,et al.  Spectral properties of angled-grating high-power semiconductor lasers , 1999 .

[24]  Goro Sasaki,et al.  Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure , 1999 .

[25]  M. Matsumoto Analysis of the blazing effect in second-order gratings , 1992, Integrated Photonics Research.

[26]  R. F. Kazarinov,et al.  Second-order distributed feedback lasers with mode selection provided by first-order radiation losses , 1985 .

[27]  E. Gornik,et al.  Analysis of TM-polarized DFB laser structures with metal surface gratings , 2000, IEEE Journal of Quantum Electronics.

[28]  Carlo Sirtori,et al.  Continuous wave operation of quantum cascade lasers based on vertical transitions at λ=4.6 μm , 1996 .

[29]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[30]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[31]  Byoung-Sung Kim,et al.  An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes , 2000, IEEE Journal of Quantum Electronics.

[32]  Christopher L. Felix,et al.  Mid-infrared photonic-crystal distributed-feedback laser with enhanced spectral purity and beam quality , 2001 .

[33]  Analysis of radiation mode effects on oscillating properties of DFB lasers , 1999 .

[34]  Erich Gornik,et al.  Surface-emitting distributed feedback quantum-cascade lasers , 2000 .

[35]  Kazuaki Sakoda,et al.  A Two-Dimensional Photonic Crystal Laser. , 1999 .

[36]  Masoud Kasraian,et al.  Surface-emitting, distributed-feedback diode lasers with uniform near-field intensity profile , 1998 .

[37]  Dan Botez,et al.  Surface-emitting, single-lobe operation from second-order distributed-reflector lasers with central grating phaseshift , 2001 .

[38]  S. H. Macomber,et al.  Analysis of grating surface emitting lasers , 1990 .

[39]  Christopher L. Felix,et al.  Mid-infrared photonic-crystal distributed-feedback lasers , 2002 .

[40]  Jonathon T. Olesberg,et al.  Differential gain, differential index, and linewidth enhancement factor for a 4 μm superlattice laser active layer , 1999 .

[41]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .