Minimal semi-annihilating ℤN scalar dark matter

We study the dark matter from an inert doublet and a complex scalar singlet stabilized by $\mathbb{Z}_N$ symmetries. This field content is the minimal one that allows dimensionless semi-annihilation couplings for $N > 2$. We consider explicitly the $\mathbb{Z}_3$ and $\mathbb{Z}_4$ cases and take into account constraints from perturbativity, unitarity, vacuum stability, necessity for the electroweak $\mathbb{Z}_N$ preserving vacuum to be the global minimum, electroweak precision tests, upper limits from direct detection and properties of the Higgs boson. Co-annihilation and semi-annihilation of dark sector particles as well as dark matter conversion significantly modify the cosmic abundance and direct detection phenomenology.

[1]  Yong Tang,et al.  Vacuum stability, neutrinos, and dark matter , 2012, 1202.5717.

[2]  P. Osland,et al.  A precision constraint on multi-Higgs-doublet models , 2007, 0711.4022.

[3]  H. Georgi,et al.  Unity of All Elementary Particle Forces , 1974 .

[4]  Antiprotons in cosmic rays from neutralino annihilation , 2005 .

[5]  V. Cavasinni Evidence for Higgs Boson Decays to the τ+τ− Final State with the ATLAS Detector , 2013 .

[6]  J. Pradler,et al.  Non-Abelian discrete dark matter , 2011, 1103.3053.

[7]  M. Tytgat,et al.  Confined hidden vector dark matter , 2009, 0907.1007.

[8]  I. Ginzburg,et al.  Evolution of the Universe to the present inert phase , 2010, 1009.4593.

[9]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[10]  Doojin Kim,et al.  Using M T 2 to distinguish dark matter stabilization symmetries , 2010, 1012.4460.

[11]  J. T. Childers,et al.  UvA-DARE (Digital Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC , 2013 .

[12]  A. Arhrib,et al.  Note on tree-level unitarity in the general two Higgs doublet model , 2000, hep-ph/0006035.

[13]  F. Wilczek,et al.  Higgs-field portal into hidden sectors , 2006, hep-ph/0605188.

[14]  M. Raidal,et al.  Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter , 2012, 1202.2962.

[15]  Alexander Pukhov,et al.  $Z_3$ Scalar Singlet Dark Matter , 2012, 1211.1014.

[16]  C. Weniger,et al.  Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay , 2009, 0912.4496.

[17]  D. Borah,et al.  Inert doublet dark matter with strong electroweak phase transition , 2012, 1204.4722.

[18]  Howard E. Haber,et al.  The Search for Supersymmetry: Probing Physics Beyond the Standard Model , 1985 .

[19]  Doojin Kim,et al.  Distinguishing dark matter stabilization symmetries using multiple kinematic edges and cusps , 2010, 1003.0899.

[20]  A. Strumia,et al.  Stabilization of the electroweak vacuum by a scalar threshold effect , 2012, 1203.0237.

[21]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[22]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[23]  Higgs boson studies at the Tevatron , 2013 .

[24]  Minkowski space structure of the Higgs potential in 2HDM , 2007 .

[25]  A. Semenov,et al.  micrOMEGAs_3: A program for calculating dark matter observables , 2014, Comput. Phys. Commun..

[26]  P. Osland,et al.  The Oblique parameters in multi-Higgs-doublet models , 2008, 0802.4353.

[27]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[28]  B. Kniehl,et al.  Higgs boson mass and new physics , 2012, 1205.2893.

[29]  M. Krawczyk,et al.  Diphoton rate in the Inert Doublet Model with a 125 GeV Higgs boson , 2012, 1212.4100.

[30]  O. Lebedev On stability of the electroweak vacuum and the Higgs portal , 2012, 1203.0156.

[31]  J. Gunion,et al.  Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors , 2013, 1306.2941.

[32]  Brian Batell,et al.  Dark discrete gauge symmetries , 2010, 1007.0045.

[33]  I. P. Ivanov,et al.  Z_p scalar dark matter from multi-Higgs-doublet models , 2012 .

[34]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[35]  Anirban Biswas,et al.  Two component dark matter: a possible explanation of 130 GeV γ-ray line from the galactic centre , 2013, 1301.3668.

[36]  Symmetries of two Higgs doublet model and CP violation , 2004, hep-ph/0408011.

[37]  M. Cirelli,et al.  Antiprotons from Dark Matter: Current constraints and future sensitivities , 2013, 1301.7079.

[38]  M. Kadastik,et al.  Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology , 2011, 1112.3647.

[39]  What is the Discrete Gauge Symmetry of the MSSM? , 2005, hep-ph/0512163.

[40]  G. Aad,et al.  Corrigendum to “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC” [Phys. Lett. B 726 (1–3) (2013) 88] , 2014 .

[41]  J. T. Childers,et al.  Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector , 2012, Journal of High Energy Physics.

[42]  P. Posch Enhancement of h→γγ in the Two Higgs Doublet Model Type I , 2010, 1001.1759.

[43]  Yue-Liang Wu,et al.  Enhancement of dark matter relic density from late time dark matter conversions , 2011, 1101.4148.

[44]  I. Ivanov Erratum: Minkowski space structure of the Higgs potential in the two-Higgs-doublet model [Phys. Rev. D 75 , 035001 (2007)] , 2007 .

[45]  Mcdonald Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[46]  M. Kadastik,et al.  Implications of Dark Matter direct detection results on LHC physics , 2010 .

[47]  M. N. Rebelo,et al.  Theory and phenomenology of two-Higgs-doublet models , 2011, 1106.0034.

[48]  H. Dreiner,et al.  What is the discrete gauge symmetry of the minimal supersymmetric standard model , 2006 .

[49]  E. Ron,et al.  The inert doublet model , 2010 .

[50]  H. Fritzsch,et al.  Unified Interactions of Leptons and Hadrons , 1975 .

[51]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .

[52]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[53]  F. Siegert,et al.  Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production , 2013, 1309.0500.

[54]  A. A. Ocampo Rios,et al.  Measurement of the top-quark mass in $ \mathrm{t}\overline{\mathrm{t}} $ events with lepton+jets final states in pp collisions at $ \sqrt{s}=7 $ TeV , 2012 .

[55]  A. Salam,et al.  Lepton Number as the Fourth Color , 1974 .

[56]  W. Skulski,et al.  The Large Underground Xenon (LUX) experiment , 2012, 1211.3788.

[57]  T. Hambye,et al.  Hidden vector dark matter , 2008, 0811.0172.

[58]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[59]  V. M. Ghete,et al.  Measurement of the properties of a Higgs boson in the four-lepton final state , 2014 .

[60]  F. Wilczek,et al.  Discrete gauge symmetry in continuum theories. , 1989, Physical review letters.

[61]  Jihn E. Kim,et al.  Anti-Su(5) , 1984 .

[62]  Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation , 2004, hep-ph/0406231.

[63]  R. Webb,et al.  After LUX: The LZ Program , 2011, 1110.0103.

[64]  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[65]  Paul A. Samuelson,et al.  How Deviant Can You Be , 1968 .

[66]  Steven R. Simon,et al.  Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks , 2013 .

[67]  The four basic ways of creating dark matter through a portal , 2011, 1112.0493.

[68]  J. McDonald,et al.  Gauge singlet scalar as inflaton and thermal relic dark matter , 2009, 0909.0520.

[69]  M. Kreps,et al.  Measurement of the fraction of Υ (1S) originating from χb(1P) decays in pp collisions at $ \sqrt{s}=7\,TeV $ , 2012, 1209.0282.

[70]  Ernest Ma,et al.  Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders , 2007, 0708.2939.

[71]  M. Ramsey-Musolf,et al.  Complex scalar singlet dark matter: Vacuum stability and phenomenology , 2012, 1202.1316.

[72]  M. Raidal,et al.  Long-lived charged Higgs at LHC as a probe of scalar dark matter , 2010, 1005.4409.

[73]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[74]  Alessandro Strumia,et al.  The universal Higgs fit , 2013, 1303.3570.

[75]  Barr. Some comments on flipped SU(5) x U(1) and flipped unification in general. , 1989, Physical review. D, Particles and fields.

[76]  Jesse Thaler,et al.  Semi-annihilation of dark matter , 2010, 1101.5413.

[77]  M. Kadastik,et al.  Dark matter as the signal of grand unification , 2009, 0907.1894.

[78]  Stability and symmetry breaking in the general two-Higgs-doublet model , 2006, hep-ph/0605184.

[79]  E. Ma Z3 dark matter and two-loop neutrino mass , 2007, 0708.3371.

[80]  Riccardo Barbieri,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[81]  A. Pierce,et al.  Natural Dark Matter from an unnatural Higgs boson and new colored particles at the TeV scale , 2007, hep-ph/0703056.

[82]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[83]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[84]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[85]  Charge and CP symmetry breaking in two Higgs doublet models , 2005, hep-ph/0507224.

[86]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[87]  M. Kadastik,et al.  Implications of the CDMS result on Dark Matter and LHC physics , 2009, 0912.3797.

[88]  A. Pierce,et al.  Singlet-Doublet Dark Matter , 2011, 1109.2604.

[89]  M. Kadastik,et al.  Electroweak symmetry breaking from the soft portal into dark matter and prediction for direct detection. , 2009, Physical review letters.

[90]  Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at √ s = 7 and 8 TeV , 2013 .

[91]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[92]  M. Ramsey-Musolf,et al.  Higgs vacuum stability, neutrino mass, and dark matter , 2012, 1210.0491.

[93]  A. Arhrib,et al.  H→γγ in the inert Higgs doublet model , 2012 .

[94]  M. McCullough,et al.  Multiple gamma lines from semi-annihilation , 2012, 1210.7817.

[95]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[96]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[97]  Ernest Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006 .

[98]  V. M. Ghete,et al.  Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states , 2013, Journal of High Energy Physics.

[99]  Yi-Fu Cai,et al.  Low Mass Dark Matter and Invisible Higgs Width In Darkon Models , 2011, 1102.1522.

[100]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[101]  The XENON1T Dark Matter Search Experiment , 2019 .

[102]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[103]  A. Strumia,et al.  Dynamical generation of the weak and Dark Matter scale , 2013, 1306.2329.

[104]  C. Cheung,et al.  Higgs and dark matter hints of an oasis in the desert , 2012, 1203.5106.

[105]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[106]  M. Kadastik,et al.  Matter parity as the origin of scalar Dark Matter , 2009, 0903.2475.

[107]  Jong-Chul Park,et al.  Assisted freeze-out , 2011, 1112.4491.

[108]  I. Masina Higgs boson and top quark masses as tests of electroweak vacuum stability , 2012, 1209.0393.

[109]  E Aprile,et al.  Dark matter results from 100 live days of XENON100 data. , 2011, Physical review letters.

[110]  P. Ko,et al.  Self-interacting scalar dark matter with local Z3 symmetry , 2014, 1402.6449.

[111]  S. Barr A New Symmetry Breaking Pattern for SO(10) and Proton Decay , 1982 .

[112]  J. Edsjo,et al.  Inert Doublet Model and LEP II Limits , 2008, 0810.3924.

[113]  K. Kannike Vacuum stability conditions from copositivity criteria , 2012, 1205.3781.

[114]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[115]  M. Raidal,et al.  Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter , 2013, 1309.6632.

[116]  M. Ciuchini,et al.  Kaon mixing beyond the SM from Nf = 2 tmQCD and model independent constraints from the UTA , 2012, 1207.1287.

[117]  M. Baak,et al.  The electroweak fit of the standard model after the discovery of a new boson at the LHC , 2012, The European Physical Journal C.

[118]  Abdelhak Djouadi,et al.  Direct detection of Higgs–portal dark matter at the LHC , 2013, The European Physical Journal C.

[119]  Abdelhak Djouadi,et al.  Implications of LHC searches for Higgs-portal dark matter , 2011, 1112.3299.

[120]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.