Autonomous clustering using rough set theory

This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency.

[1]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[2]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[3]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[4]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[5]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[6]  Shusaku Tsumoto,et al.  A knowledge-oriented clustering technique based on rough sets , 2001, 25th Annual International Computer Software and Applications Conference. COMPSAC 2001.

[7]  Ronald R. Yager Intelligent control of the hierarchical agglomerative clustering process , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[8]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[9]  Subhash Sharma Applied multivariate techniques , 1995 .

[10]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[11]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[12]  Yutaka Hata,et al.  A Rough Set Based Clustering Method by Knowledge Combination(Regular Section) , 2002 .

[13]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[14]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[15]  F. Marriott Optimization methods of cluster analysis , 1982 .

[16]  R. Sokal,et al.  Principles of numerical taxonomy , 1965 .

[17]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[18]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[21]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[22]  Mohamed S. Kamel,et al.  New algorithms for solving the fuzzy clustering problem , 1994, Pattern Recognit..

[23]  B. Manly Multivariate Statistical Methods : A Primer , 1986 .

[24]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[25]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[26]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[27]  William J. Wilson,et al.  Multivariate Statistical Methods , 2005, Technometrics.

[28]  Chandrasekhar Kambhampati,et al.  Knowledge-oriented clustering for decision support , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[29]  R. Jancey Multidimensional group analysis , 1966 .

[30]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[31]  P. Sneath The application of computers to taxonomy. , 1957, Journal of general microbiology.

[32]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[33]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[35]  최재영,et al.  개선된 ISODATA 알고리즘을 이용한 공격 자동탐지 , 2010 .

[36]  Chandrasekhar Kambhampati,et al.  A rough set solution to a fuzzy set problem , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).