Non-elitist evolutionary multi-objective optimizers revisited

Since around 2000, it has been considered that elitist evolutionary multi-objective optimization algorithms (EMOAs) always outperform non-elitist EMOAs. This paper revisits the performance of non-elitist EMOAs for bi-objective continuous optimization when using an unbounded external archive. This paper examines the performance of EMOAs with two elitist and one non-elitist environmental selections. The performance of EMOAs is evaluated on the bi-objective BBOB problem suite provided by the COCO platform. In contrast to conventional wisdom, results show that non-elitist EMOAs with particular crossover methods perform significantly well on the bi-objective BBOB problems with many decision variables when using the unbounded external archive. This paper also analyzes the properties of the non-elitist selection.

[1]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[2]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[3]  Tea Tusar,et al.  Performance of the DEMO Algorithm on the Bi-objective BBOB Test Suite , 2016, GECCO.

[4]  秋本 洋平 Design of evolutionary computation for continuous optimization , 2011 .

[5]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[6]  Günter Rudolph,et al.  Toward Step-Size Adaptation in Evolutionary Multiobjective Optimization , 2017, EMO.

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  Masayuki Yamamura,et al.  Theoretical Analysis of Simplex Crossover for Real-Coded Genetic Algorithms , 2000, PPSN.

[9]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[10]  Dimo Brockhoff,et al.  Benchmarking Numerical Multiobjective Optimizers Revisited , 2015, GECCO.

[11]  Isao Ono,et al.  Adaptation of expansion rate for real-coded crossovers , 2009, GECCO.

[12]  Shigenobu Kobayashi,et al.  Theoretical Analysis of the Unimodal Normal Distiibution Crossover for Real-coded Genetic Algorithms , 1999 .

[13]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[14]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[15]  Tapabrata Ray,et al.  Distance-Based Subset Selection for Benchmarking in Evolutionary Multi/Many-Objective Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[16]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[17]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[18]  S. Kobayashi,et al.  Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[20]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[21]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[22]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[23]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[24]  Marco Laumanns,et al.  On Sequential Online Archiving of Objective Vectors , 2011, EMO.

[25]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[26]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[27]  Anne Auger,et al.  COCO: The Bi-objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite , 2016, ArXiv.

[28]  Anne Auger,et al.  Biobjective Performance Assessment with the COCO Platform , 2016, ArXiv.

[29]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[30]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[31]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[32]  S. Kobayashi,et al.  Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[33]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[36]  Tobias Friedrich,et al.  Generic Postprocessing via Subset Selection for Hypervolume and Epsilon-Indicator , 2014, PPSN.

[37]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..