Polynomial LPV synthesis applied to turbofan engines

Abstract Results on polynomial fixed-order controller design are extended to SISO gain-scheduling with guaranteed stability and H ∞ performance over the whole scheduling parameter range. Salient features of the approach are: (a) the use of polynomials as modeling objects; (b) the use of flexible linear matrix inequalities (LMI) conditions allowing polynomial dependence of the open-loop system and controller transfer functions in the scheduling parameters; and (c) the decoupling in the LMI conditions between the Lyapunov variables and the controller variables, allowing both parameter-dependent Lyapunov functions and fixed-order controller design. The synthesis procedure is integrated into the ATOL framework developed by the manufacturer of aircraft and space engines Snecma to systematically design reduced complexity gain-scheduled control laws for aircraft turbofan engines.

[1]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[2]  S. Tarbouriech,et al.  Anti-windup design with guaranteed regions of stability: an LMI-based approach , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  Luc Reberga,et al.  Commande robuste multivariable des turboréacteurs , 2005 .

[4]  Gary J. Balas,et al.  Linear, parameter‐varying control and its application to a turbofan engine , 2002 .

[5]  J. Huisman The Netherlands , 1996, The Lancet.

[6]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[7]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[8]  Fuwen Yang,et al.  Fixed-Order Robust $H_{\infty}$ Controller Design With Regional Pole Assignment , 2007, IEEE Transactions on Automatic Control.

[9]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[10]  F. Bruzelius Linear Parameter-Varying Systems - an approach to gain scheduling , 2004 .

[11]  Didier Henrion,et al.  Linearization and Identification of Aircraft Turbofan Engine Models , 2004 .

[12]  Okko H. Bosgra,et al.  LPV control for a wafer stage: beyond the theoretical solution , 2005 .

[13]  Sophie Tarbouriech,et al.  Antiwindup design with guaranteed regions of stability: an LMI-based approach , 2005, IEEE Transactions on Automatic Control.

[14]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[15]  Dimitri Peaucelle,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..

[16]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[17]  C. Scherer,et al.  Lecture Notes DISC Course on Linear Matrix Inequalities in Control , 1999 .

[18]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[19]  Luc Reberga,et al.  PROGRAMMING AND COMPUTING TOOLS FOR JET ENGINE CONTROL DESIGN , 2005 .

[20]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[21]  Didier Henrion,et al.  LPV MODELING OF A TURBOFAN ENGINE , 2005 .