Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glass

[1]  J. Bowen,et al.  Effect of plasma surface modification on the biocompatibility of UHMWPE , 2010, Biomedical materials.

[2]  K. Ishihara,et al.  Control of cell function on a phospholipid polymer having phenylboronic acid moiety , 2010, Biomedical materials.

[3]  Karsten Schröder,et al.  Similarities between Plasma Amino Functionalized PEEK and Titanium Surfaces Concerning Enhancement of Osteoblast Cell Adhesion , 2010 .

[4]  M. Hervy Modulation of Cell Structure and Function in Response to Substrate Stiffness and External Forces , 2010 .

[5]  C. Zhao,et al.  Active screen plasma nitriding of AISI 316L austenitic stainless steel at different potentials , 2008 .

[6]  F. Mahboubi,et al.  Surface modification of 30CrNiMo8 low-alloy steel by active screen setup and conventional plasma nitriding methods , 2007 .

[7]  D. Mckenzie,et al.  Plasma‐Treated Polyethylene Surfaces for Improved Binding of Active Protein , 2007 .

[8]  R. Hill,et al.  Real‐Time Nucleation and Crystallization Studies of a Fluorapatite Glass–Ceramics Using Small‐Angle Neutron Scattering and Neutron Diffraction , 2007 .

[9]  R. Hill,et al.  Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy , 2007 .

[10]  K. J. B. Ribeiro,et al.  Use of cathodic cage in plasma nitriding , 2006 .

[11]  C. Li,et al.  Study on the active screen plasma nitriding and its nitriding mechanism , 2006 .

[12]  R. Hill,et al.  MAS-NMR spectroscopy studies in the setting reaction of glass ionomer cements. , 2006, Journal of dentistry.

[13]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[14]  C. Li,et al.  A feasibility study of plasma nitriding of steel with an oxide layer on the surface , 2006 .

[15]  P. Chu Plasma-Treated Biomaterials , 2006, IEEE Transactions on Plasma Science.

[16]  D. Wood,et al.  Influence of Fluorine Content in Apatite–Mullite Glass‐Ceramics , 2004 .

[17]  A. Stamboulis,et al.  Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). , 2004, Biomaterials.

[18]  C. Li,et al.  Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel , 2004 .

[19]  M. Towler,et al.  The influence of strontium substitution in fluorapatite glasses and glass-ceramics , 2004 .

[20]  K. Stanton,et al.  Crystallization modifies osteoconductivity in an apatite–mullite glass–ceramic , 2003, Journal of materials science. Materials in medicine.

[21]  F. Bäckhed,et al.  Nanoscale features influence epithelial cell morphology and cytokine production. , 2003, Biomaterials.

[22]  C. Oehr Plasma surface modification of polymers for biomedical use , 2003 .

[23]  Shaochen Chen,et al.  Nanoscale surface modification of glass using a 1064 nm pulsed laser , 2003 .

[24]  C. X. Li,et al.  Active screen plasma nitriding of austenitic stainless steel , 2002 .

[25]  C. Li,et al.  A Study of Active Screen Plasma Nitriding , 2002 .

[26]  G. Nicolardi,et al.  Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells. , 2000, Journal of biomedical materials research.

[27]  J. Jang,et al.  The effect of the oxygen-plasma treatment of UHMWPE fiber on the transverse properties of UHMWPE-fiber/vinylester composites , 1999 .

[28]  K. Rie,et al.  Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties , 1999 .

[29]  F. Cui,et al.  Biomaterials modification by ion-beam processing , 1999 .

[30]  E. Edelman,et al.  Effects of amide and amine plasma-treated ePTFE vascular grafts on endothelial cell lining in an artificial circulatory system. , 1998, Journal of biomedical materials research.

[31]  L. Pruitt,et al.  Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. , 1998, Journal of biomedical materials research.

[32]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[33]  B. Kasemo,et al.  Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. , 1997, Journal of biomedical materials research.

[34]  F. Della Ragione,et al.  Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. , 1996, Biomaterials.

[35]  R. A. Silva,et al.  Plasma surface treatment and PACVD on Ti alloys for surgical implants , 1995 .

[36]  N A Peppas,et al.  New challenges in biomaterials. , 1994, Science.

[37]  J. R. Conrad,et al.  Plasma source ion-implantation technique for surface modification of materials , 1987 .

[38]  G. H. Frischat,et al.  Some properties of nitrogen-containing Na2OCaOSiO2 Glasses , 1982 .

[39]  H. Yasuda,et al.  Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. , 1982, Biomaterials.

[40]  R. Mitchell,et al.  Chapter II.1.5 – Tissues, the Extracellular Matrix, and Cell–Biomaterial Interactions , 2013 .

[41]  Larry L. Hench,et al.  Chapter I.2.4 – Ceramics, Glasses, and Glass-Ceramics: Basic Principles , 2013 .

[42]  R. Hill,et al.  Characterization of the structure of calcium alumino-silicate and calcium fluoro-alumino-silicate glasses by magic angle spinning nuclear magnetic resonance (MAS-NMR) , 2004 .

[43]  J. Amouroux,et al.  Study of the Surface Properties and Stability of Polymer Films Treated by NH3 Plasma and Its Mixtures , 1998 .

[44]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.

[45]  A. Hoffman Surface modification of polymers: Physical, chemical, mechanical and biological methods , 1996 .

[46]  H. J. Griesser,et al.  Growth of human cells on plasma polymers: putative role of amine and amide groups. , 1994, Journal of biomaterials science. Polymer edition.

[47]  H. J. Griesser,et al.  Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen- and nitrogen-containing surfaces made by radiofrequency plasmas. , 1994, Journal of biomaterials science. Polymer edition.

[48]  J. R. Holloway,et al.  Nitride glasses obtained by high-pressure synthesis , 1994, Nature.

[49]  S D Bruck,et al.  New ideas in biomaterials science--a path to engineered biomaterials. , 1994, Journal of biomedical materials research.

[50]  Y. Ikada,et al.  Cell adhesion to plasma-treated polymer surfaces , 1993 .

[51]  B. Ratner Plasma deposition for biomedical applications: a brief review. , 1992, Journal of biomaterials science. Polymer edition.

[52]  B D Ratner,et al.  Endothelial cell growth on oxygen-containing films deposited by radio-frequency plasmas: the role of surface carbonyl groups. , 1991, Journal of biomaterials science. Polymer edition.

[53]  A. Chilkoti,et al.  7 – Plasma Deposition and Treatment for Biomaterial Applications , 1990 .

[54]  R. D'agostino Plasma deposition, treatment, and etching of polymers , 1990 .

[55]  M. Lewis Glasses and glass-ceramics , 1989 .