Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats

[1]  Mingming Zhang,et al.  Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields , 2019, Experimental Neurology.

[2]  K. Hsu,et al.  Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor , 2019, Neuropharmacology.

[3]  S. Soinila,et al.  Complication Burden Index—A tool for comprehensive evaluation of the effect of complications on functional outcome after status epilepticus , 2018, Epilepsia.

[4]  C. Porcaro,et al.  Brain Functional Connectivity Changes After Transcranial Direct Current Stimulation in Epileptic Patients , 2018, Front. Neural Circuits.

[5]  F. Fregni,et al.  Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review , 2018, Front. Neurosci..

[6]  G. Buzsáki,et al.  Direct effects of transcranial electric stimulation on brain circuits in rats and humans , 2018, Nature Communications.

[7]  J. Gaiarsa,et al.  Pro-Brain-Derived Neurotrophic Factor (proBDNF)-Mediated p75NTR Activation Promotes Depolarizing Actions of GABA and Increases Susceptibility to Epileptic Seizures , 2018, Cerebral cortex.

[8]  Xile Wei,et al.  Slow moving neural source in the epileptic hippocampus can mimic progression of human seizures , 2018, Scientific Reports.

[9]  A. Kanthasamy,et al.  Status Epilepticus: Behavioral and Electroencephalography Seizure Correlates in Kainate Experimental Models , 2018, Front. Neurol..

[10]  Chou-Ching K. Lin,et al.  Repeated transcranial direct current stimulation improves cognitive dysfunction and synaptic plasticity deficit in the prefrontal cortex of streptozotocin-induced diabetic rats , 2017, Brain Stimulation.

[11]  Lucas C. Parra,et al.  Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects , 2017, Brain Stimulation.

[12]  Walter G. Besio,et al.  Transcranial focal electrical stimulation reduces seizure activity and hippocampal glutamate release during status epilepticus , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[13]  J. McNamara,et al.  A Peptide Uncoupling BDNF Receptor TrkB from Phospholipase Cγ1 Prevents Epilepsy Induced by Status Epilepticus , 2015, Neuron.

[14]  Simon Shorvon,et al.  A definition and classification of status epilepticus – Report of the ILAE Task Force on Classification of Status Epilepticus , 2015, Epilepsia.

[15]  R. Jankord,et al.  Modulating Hippocampal Plasticity with In Vivo Brain Stimulation , 2015, The Journal of Neuroscience.

[16]  Á. Pascual-Leone,et al.  Acute seizure suppression by transcranial direct current stimulation in rats , 2015, Annals of clinical and translational neurology.

[17]  M. Hinder,et al.  Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective , 2015, Front. Aging Neurosci..

[18]  D. Lowenstein,et al.  Status epilepticus in adults , 2015, The Lancet Neurology.

[19]  Felipe Fregni,et al.  Transcranial Direct Current Stimulation in Epilepsy , 2015, Brain Stimulation.

[20]  V. Kitchigina,et al.  Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs , 2015, Epilepsy Research.

[21]  Emiliano Schena,et al.  Efficacy of cathodal transcranial direct current stimulation in drug-resistant epilepsy: A proof of principle , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[22]  S. Mayer,et al.  Is pentobarbital safe and efficacious in the treatment of super-refractory status epilepticus: a cohort study , 2014, Critical Care.

[23]  K. Hsu,et al.  Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data , 2014 .

[24]  Massimo Avoli,et al.  The kainic acid model of temporal lobe epilepsy , 2013, Neuroscience & Biobehavioral Reviews.

[25]  William C. Wetsel,et al.  Transient Inhibition of TrkB Kinase after Status Epilepticus Prevents Development of Temporal Lobe Epilepsy , 2013, Neuron.

[26]  Somsak Tiamkao,et al.  Transcranial Direct Current Stimulation for Treatment of Refractory Childhood Focal Epilepsy , 2013, Brain Stimulation.

[27]  Walter Paulus,et al.  Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation , 2013, Brain Stimulation.

[28]  L. Parra,et al.  Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects , 2013, The Journal of physiology.

[29]  M. Bikson,et al.  Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases , 2013, Clinical Neurophysiology.

[30]  Pablo M. Casillas-Espinosa,et al.  Regulators of synaptic transmission: Roles in the pathogenesis and treatment of epilepsy , 2012, Epilepsia.

[31]  F. Fregni,et al.  Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy , 2012, Epilepsy & Behavior.

[32]  D. Terney,et al.  Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: A controlled study , 2011, Epilepsy Research.

[33]  M. Ko,et al.  Suppression of Seizure by Cathodal Transcranial Direct Current Stimulation in an Epileptic Patient - A Case Report - , 2011, Annals of rehabilitation medicine.

[34]  Heidi M. Schambra,et al.  Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning , 2010, Neuron.

[35]  Andrew White,et al.  EEG spike activity precedes epilepsy after kainate‐induced status epilepticus , 2010, Epilepsia.

[36]  T. Sejnowski,et al.  Cellular and network mechanisms of electrographic seizures. , 2008, Drug discovery today. Disease models.

[37]  W. H. Jordan,et al.  Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions , 2007, Toxicologic pathology.

[38]  D. Liebetanz,et al.  Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex , 2005, Clinical Neurophysiology.

[39]  M. Nitsche,et al.  Anticonvulsant Effects of Transcranial Direct‐current Stimulation (tDCS) in the Rat Cortical Ramp Model of Focal Epilepsy , 2006, Epilepsia.

[40]  Michael Frotscher,et al.  Kainic acid‐induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: Possible anatomical substrate of granule cell hyperinhibition in chronically epileptic rats , 2006, The Journal of comparative neurology.

[41]  Á. Pascual-Leone,et al.  A Controlled Clinical Trial of Cathodal DC Polarization in Patients with Refractory Epilepsy , 2006, Epilepsia.

[42]  A. Priori,et al.  Non‐synaptic mechanisms underlie the after‐effects of cathodal transcutaneous direct current stimulation of the human brain , 2005, The Journal of physiology.

[43]  F Edward Dudek,et al.  Chemoconvulsant Model of Chronic Spontaneous Seizures , 2005, Current protocols in neuroscience.

[44]  J. Perlin,et al.  Estimating the economic burden of status epilepticus to the health care system , 2005, Seizure.

[45]  R. Racine,et al.  The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes , 2004, Neuroscience.

[46]  Walter Paulus,et al.  Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine , 2004, Neuropsychopharmacology.

[47]  Jan Claassen,et al.  Refractory status epilepticus: frequency, risk factors, and impact on outcome. , 2002, Archives of neurology.

[48]  W. Oertel,et al.  Incidence of Status Epilepticus in Adults in Germany: A Prospective, Population‐Based Study , 2001, Epilepsia.

[49]  P Jallon,et al.  Incidence of status epilepticus in French-speaking Switzerland , 2000, Neurology.

[50]  S. Roper,et al.  Altered mRNA expression for brain‐derived neurotrophic factor and type II calcium/Calmodulin‐dependent protein kinase in the hippocampus of patients with intractable temporal lobe epilepsy , 2000, The Journal of comparative neurology.

[51]  P. Schwartzkroin,et al.  Kainic acid‐induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats , 2000, Hippocampus.

[52]  H. Scharfman,et al.  Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex , 1999, Neuroscience.

[53]  Hitoshi Takahashi,et al.  Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y , 1999, Brain Research.

[54]  J. Pellock,et al.  Epidemiology of Status Epilepticus , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[55]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.