Magnetospheres of black hole systems in force-free plasma

The interaction of black holes with ambient magnetic fields is important for a variety of highly energetic astrophysical phenomena. We study this interaction within the force-free approximation in which a tenuous plasma is assumed to have zero inertia. Blandford and Znajek used this approach to demonstrate the conversion of some of the black hole's energy into electromagnetic Poynting flux in stationary and axisymmetric single black hole systems. We adopt this approach and extend it to examine asymmetric and, most importantly, dynamical systems by implementing the fully nonlinear field equations of general relativity coupled to Maxwell's equations. For single black holes, we study, in particular, the dependence of the Poynting flux and show that, even for misalignments between the black hole spin and the direction of the asymptotic magnetic field, a Poynting flux is generated with a luminosity dependent on such misalignment. For binary black hole systems, we show both in the head-on and orbiting cases that the moving black holes generate a Poynting flux.

[1]  R. Izzard,et al.  A new synthetic model for asymptotic giant branch stars , 2004 .

[2]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[3]  C. Palenzuela,et al.  Dual Jets from Binary Black Holes , 2010, Science.

[4]  C. Palenzuela,et al.  Binary black holes' effects on electromagnetic fields. , 2009, Physical review letters.

[5]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[6]  C. Palenzuela,et al.  Simulating binary neutron stars: Dynamics and gravitational waves , 2007, 0708.2720.

[7]  Kavli Institute for Particle Astrophysics,et al.  BLACK HOLE SPIN AND THE RADIO LOUD/QUIET DICHOTOMY OF ACTIVE GALACTIC NUCLEI , 2009, 0911.2228.

[8]  Harald P. Pfeiffer,et al.  Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.

[9]  L. Lehner,et al.  Dealing with delicate issues in waveform calculations , 2007, 0706.1319.

[10]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[11]  Manuel Tiglio,et al.  Orbiting binary black hole evolutions with a multipatch high order finite-difference approach , 2009, 0904.0493.

[12]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[13]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[14]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[15]  Oscar Reula,et al.  Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas , 2008, 0810.1838.

[16]  P. C. Fragile EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS , 2009, 0910.5721.

[17]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[18]  J. Sylvestre Prospects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events , 2003, astro-ph/0303512.

[19]  Lawrence E. Kidder,et al.  Estimating the final spin of a binary black hole coalescence , 2007, 0709.3839.

[20]  S. Teukolsky,et al.  Geometry of a Black Hole Collision , 1995, Science.

[21]  G. Field,et al.  Radiation from magnetized accretion disks in active galactic nuclei , 1993 .

[22]  K. Sitte The nature of the primaries of horizontal air showers , 1969 .

[23]  Steven L. Liebling,et al.  AMR, stability and higher accuracy , 2005, gr-qc/0510111.

[24]  C. Palenzuela,et al.  Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields , 2009, 0911.3889.

[25]  J. Mckinney,et al.  The ‘Meissner effect’ and the Blandford–Znajek mechanism in conductive black hole magnetospheres , 2007, astro-ph/0702269.

[26]  J. Lasota,et al.  Black Holes and Magnetic Fields , 1975 .

[27]  Head-on collisions of boson stars , 2006, gr-qc/0612067.

[28]  Steven L. Liebling Singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement , 2002 .

[29]  T. Damour Black-hole eddy currents , 1978 .

[30]  H. Lee,et al.  The Blandford-Znajek process as a central engine for a gamma-ray burst , 1999, astro-ph/9906213.

[31]  R. Wald,et al.  Black hole in a uniform magnetic field , 1974 .

[32]  Erik Schnetter,et al.  Multipatch methods in general relativistic astrophysics: Hydrodynamical flows on fixed backgrounds , 2007, 0712.0353.

[33]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[34]  Stefi A. Baum,et al.  Discovery of Ghost Cavities in the X-Ray Atmosphere of Abell 2597 , 2001 .

[35]  A. Gruzinov Pulsar Emission and Force-Free Electrodynamics , 2007, astro-ph/0702243.

[36]  L. Rezzolla,et al.  Vacuum Electromagnetic Counterparts of Binary Black-Hole Mergers , 2009, 0912.2330.

[37]  M. Massi,et al.  Magnetic field upper limits for jet formation , 2007, 0709.4287.

[38]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.