Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites.

The air-free reaction between FeCl(2) and H(4)dobdc (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) in a mixture of N,N-dimethylformamide (DMF) and methanol affords Fe(2)(dobdc)·4DMF, a metal-organic framework adopting the MOF-74 (or CPO-27) structure type. The desolvated form of this material displays a Brunauer-Emmett-Teller (BET) surface area of 1360 m(2)/g and features a hexagonal array of one-dimensional channels lined with coordinatively unsaturated Fe(II) centers. Gas adsorption isotherms at 298 K indicate that Fe(2)(dobdc) binds O(2) preferentially over N(2), with an irreversible capacity of 9.3 wt %, corresponding to the adsorption of one O(2) molecule per two iron centers. Remarkably, at 211 K, O(2) uptake is fully reversible and the capacity increases to 18.2 wt %, corresponding to the adsorption of one O(2) molecule per iron center. Mössbauer and infrared spectra are consistent with partial charge transfer from iron(II) to O(2) at low temperature and complete charge transfer to form iron(III) and O(2)(2-) at room temperature. The results of Rietveld analyses of powder neutron diffraction data (4 K) confirm this interpretation, revealing O(2) bound to iron in a symmetric side-on mode with d(O-O) = 1.25(1) Å at low temperature and in a slipped side-on mode with d(O-O) = 1.6(1) Å when oxidized at room temperature. Application of ideal adsorbed solution theory in simulating breakthrough curves shows Fe(2)(dobdc) to be a promising material for the separation of O(2) from air at temperatures well above those currently employed in industrial settings.

[1]  C. Kepert,et al.  Reversible and selective O2 chemisorption in a porous metal-organic host material. , 2011, Journal of the American Chemical Society.

[2]  Rajamani Krishna,et al.  Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber , 2011 .

[3]  S. Dehnen,et al.  New three-dimensional metal-organic framework with heterometallic [Fe-Ag] building units: synthesis, crystal structure, and functional studies. , 2011, Inorganic chemistry.

[4]  Adriano Zecchina,et al.  Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. , 2010, Chemical Society reviews.

[5]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[6]  K. Lillerud,et al.  Functionalization of UiO-66 Metal−Organic Framework and Highly Cross-Linked Polystyrene with Cr(CO)3: In Situ Formation, Stability, and Photoreactivity , 2010 .

[7]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[8]  J. Eckert,et al.  Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). , 2010, Chemical communications.

[9]  C. Arean,et al.  Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74 , 2010 .

[10]  Alexander M. Spokoyny,et al.  Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. , 2010, Chemical communications.

[11]  Craig M. Brown,et al.  Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. , 2010, Journal of the American Chemical Society.

[12]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[13]  C. Liang,et al.  Selective Gas Adsorption within a Five-Connected Porous Metal-Organic Framework , 2010 .

[14]  Krista S. Walton,et al.  Gas Adsorption Study on Mesoporous Metal−Organic Framework UMCM-1 , 2010 .

[15]  Seung-Tae Yang,et al.  Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. , 2010, Journal of nanoscience and nanotechnology.

[16]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[17]  Andreas Poullikkas,et al.  Assessment of oxyfuel power generation technologies , 2009 .

[18]  Y. Naruta,et al.  Spectroscopic characterization of a hydroperoxo-heme intermediate: conversion of a side-on peroxo to an end-on hydroperoxo complex. , 2009, Angewandte Chemie.

[19]  M. Kubo,et al.  Geometric and electronic structure and reactivity of a mononuclear "side-on" nickel(III)-peroxo complex. , 2009, Nature chemistry.

[20]  Seth M. Cohen,et al.  Engineering a metal-organic framework catalyst by using postsynthetic modification. , 2009, Angewandte Chemie.

[21]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[22]  Günter Scheffknecht,et al.  The oxycoal process with cryogenic oxygen supply , 2009, Naturwissenschaften.

[23]  S. D. de Visser,et al.  Structural characterization and remarkable axial ligand effect on the nucleophilic reactivity of a nonheme manganese(III)-peroxo complex. , 2009, Angewandte Chemie.

[24]  Hong‐Cai Zhou,et al.  Investigation of gas adsorption performances and H2 affinities of porous metal-organic frameworks with different entatic metal centers. , 2009, Inorganic chemistry.

[25]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[26]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[27]  K. Chapman,et al.  Elucidating the mechanism of a two-step spin transition in a nanoporous metal-organic framework. , 2008, Journal of the American Chemical Society.

[28]  Wei Zhou,et al.  Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. , 2008, Journal of the American Chemical Society.

[29]  F. Grandjean,et al.  Synthesis and characterization of two intensely colored tris(benzoylcyanoxime)iron(II) anionic complexes. , 2008, Inorganic chemistry.

[30]  K. Wieghardt,et al.  A "side-on" superoxonickel complex [LNi(O2)] with a square-planar tetracoordinate nickel(II) center and its conversion into [LNi(mu-OH)2NiL]. , 2008, Angewandte Chemie.

[31]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[32]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[33]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[34]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[35]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[36]  C. Bouallou,et al.  Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal , 2008 .

[37]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  H. Fjellvåg,et al.  Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. , 2008, Chemistry.

[39]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[40]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[41]  R. T. Yang,et al.  Gas adsorption and storage in metal-organic framework MOF-177. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[42]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[43]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[44]  Y. Hwang,et al.  Gas‐Sorption Selectivity of CUK‐1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine‐2,4‐ Dicarboxylic Acid , 2007 .

[45]  E. Kovaleva,et al.  Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. , 2007, Accounts of chemical research.

[46]  E. Kovaleva,et al.  Crystal Structures of Fe2+ Dioxygenase Superoxo, Alkylperoxo, and Bound Product Intermediates , 2007, Science.

[47]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[48]  M. Hagen,et al.  Echidna—the new high-resolution powder diffractometer being built at OPAL , 2006 .

[49]  S. Kaskel,et al.  Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1) , 2006 .

[50]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[51]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[52]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[53]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[54]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[55]  P. Maldivi,et al.  Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models. , 2004, Biochemistry.

[56]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[57]  A. Spek,et al.  End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. , 2003, Inorganic chemistry.

[58]  H. Eklund,et al.  Crystal Structure of Naphthalene Dioxygenase: Side-on Binding of Dioxygen to Iron , 2003, Science.

[59]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[60]  Chang-Ha Lee,et al.  Air separation by a small-scale two-bed medical O2 pressure swing adsorption , 2001 .

[61]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[62]  John Emsley,et al.  Nature's building blocks : an A-Z guide to the elements , 2001 .

[63]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[64]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[65]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[66]  Lawrence Que,et al.  Modeling the Oxygen Activation Chemistry of Methane Monooxygenase and Ribonucleotide Reductase , 1996 .

[67]  Ravi Kumar Vacuum Swing Adsorption Process for Oxygen Production–-A Historical Perspective , 1996 .

[68]  Andrew L. Feig,et al.  Reactions of Non-Heme Iron(II) Centers with Dioxygen in Biology and Chemistry , 1994 .

[69]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[70]  P.-M. Weinspach,et al.  Study on the CO2-recovery from an ICGCC-plant , 1992 .

[71]  A. Rheingold,et al.  Crystal structure of a side-on superoxo complex of cobalt and hydrogen abstraction by a reactive terminal oxo ligand , 1990 .

[72]  J. Sanders-Loehr,et al.  Raman spectroscopic evidence for side-on binding of peroxide ion to (ethylenediaminetetraacetato)ferrate(1-) , 1988 .

[73]  L. K. Hanson,et al.  Peroxo(tetraphenylporphinato)manganese(III) and chloro(tetraphenylporphinato)manganese(II) anions. Synthesis, crystal structures, and electronic structures. , 1987 .

[74]  G. Spoto,et al.  Dioxygen adducts of iron(II) at the surface of MgO-FeO solid solutions , 1986 .

[75]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[76]  K. Nakamoto,et al.  Matrix isolation infrared spectra of dioxygen adducts of iron(II) porphyrins and related compounds , 1984 .

[77]  J. Valentine,et al.  Reactions of superoxide with iron porphyrins in aprotic solvents. A high spin ferric porphyrin peroxo complex , 1980 .

[78]  L. Vaska Dioxygen-metal complexes: toward a unified view , 1976 .

[79]  P. Walker,et al.  Separation of Oxygen and Nitrogen Using 5A Zeolite and Carbon Molecular Sieves , 1976 .

[80]  J. Paasiv́irta,et al.  The Crystal Structure of two Modifications of Oxidodiperoxido-2,2'-dipyridylchromium(VI), [CrO(O2)2(C10H8N2)]. , 1968 .

[81]  B. N. Figgis,et al.  Introduction to Ligand Fields , 1966 .

[82]  R. Ingalls Electric-Field Gradient Tensor in Ferrous Compounds , 1964 .

[83]  H. Babcock,et al.  No. 750. Fine structure of the red system of atmospheric oxygen bands. , 1948 .

[84]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .