RACE: A Real-Time Scheduling Policy and Communication Architecture for Large-Scale Wireless Sensor Networks

In wireless sensor networks (WSN), individual sensor nodes are inherently unreliable and have very limited capabilities to ensure real-time properties. In fact, one of the most predominant limitations in wireless sensor networks is energy consumption, which hinders the capacity of the network to provide real-time guarantees (e.g. low duty-cycles, low transmission range). Many approaches have been proposed to deal with energy/latency trade-offs, but they are likely to be insufficient for the applications where reduced delay guarantee is the main concern. We present and evaluate a packet scheduling policy and routing algorithm called RACE that inherently accounts for time constraints. We show that this algorithm is particularly suitable for communication in sensor networks in which a large number of wireless devices are seamlessly integrated into a physical space to perform real-time monitoring and control. Detailed simulations of representative sensor network environments demonstrate that RACE significantly reduces the end-to-end deadline and miss ratio in the sensor network. Also RACE will balance load and energy consumption of network and life time of network will be increased.

[1]  Francesca Cuomo,et al.  A MAC protocol for Delay-Bounded applications in Wireless Sensor Networks , 2004 .

[2]  Wendi Heinzelman,et al.  Energy-efficient communication protocol for wireless microsensor networks , 2000, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.

[3]  Chenyang Lu,et al.  RAP: a real-time communication architecture for large-scale wireless sensor networks , 2002, Proceedings. Eighth IEEE Real-Time and Embedded Technology and Applications Symposium.

[4]  Chenyang Lu,et al.  SPEED: A Real-Time Routing Protocol for Sensor Networks , 2002 .

[5]  Bhaskar Krishnamachari,et al.  An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[6]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[7]  Claude Castelluccia,et al.  Differentiation mechanisms for IEEE 802.11 , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[8]  Keith W. Ross,et al.  Computer networking - a top-down approach featuring the internet , 2000 .

[9]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.