Coupling modeling and reduction techniques of cavity-backed slot antennas: FDTD versus measurements

Cavity-backed slot (CBS) antennas are commonly used in Earth-based and space-borne applications. In this manuscript, the finite-difference time-domain (FDTD) method is used to analyze different antenna characteristics of such elements including input impedance, coupling, and radiation patterns. Emphasis is given to coupling calculations, especially to different methods to reduce coupling. Specifically, coupling reduction is attempted using lossy material superstrates or ground plane discontinuities, such as slits. Numerical issues concerning the analysis of CBS antennas in the context of FDTD are also discussed.

[1]  Yahya Rahmat-Samii,et al.  Performance analysis of antennas for hand-held transceivers using FDTD , 1994 .

[2]  A. Hessel,et al.  Effect of lossy ground on performance of planar and cylindrical arrays , 1990 .

[3]  Raymond J. Luebbers,et al.  A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations , 1996 .

[4]  C. M. Knop,et al.  An Absorber-Wall Parallel-Plate Waveguide , 1986 .

[5]  C. A. Siller An experimental investigation of wide-angle sidelobe suppression in a pyramidal horn-reflector antenna , 1984, AT&T Bell Laboratories Technical Journal.

[6]  Constantine A. Balanis,et al.  Contour path FDTD method for analysis of pyramidal horns with composite inner E-plane walls , 1994 .

[7]  D. Pozar Input impedance and mutual coupling of rectangular microstrip antennas , 1982 .

[8]  A. Reineix,et al.  Analysis of microstrip patch antennas using finite difference time domain method , 1989 .

[9]  A. J. Parfitt,et al.  Computation of aperture antenna mutual coupling using FDTD and Kirchhoff field transformation , 1998 .

[10]  H. Moheb,et al.  Numerical and experimental investigation of cavity-backed arbitrary slot antennas , 1996 .

[11]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[12]  W. Scott,et al.  Accurate computation of the radiation from simple antennas using the finite-difference time-domain method , 1989, Digest on Antennas and Propagation Society International Symposium.

[13]  A. Adams Flush mounted rectangular cavity slot antennas--Theory and design , 1967 .

[14]  Kuniaki Yoshitomi,et al.  Radiation from a rectangular waveguide with a lossy flange , 1994 .

[15]  T. Lo,et al.  Using linear and nonlinear predictors to improve the computational efficiency of the FD-TD algorithm , 1994 .

[16]  R. Luebbers,et al.  FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box , 1992 .

[17]  C. S. Lee,et al.  A simple circular-polarized antenna: circular waveguide horn coated with lossy magnetic material , 1988 .

[18]  Charles M. Knop,et al.  On the fields in a conical horn having an arbitrary wall impedance , 1986 .

[19]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[20]  K. McInturff,et al.  The Fourier transform of linearly varying functions with polygonal support , 1991 .

[21]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[22]  J. Galejs,et al.  Admittance of a rectangular slot which is backed by a rectangular cavity , 1963 .

[23]  Kiyohiko Itoh,et al.  Design of cavity-backed slot antennas using the finite-difference time-domain technique , 1998 .

[24]  Allen Taflove,et al.  FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads , 1994 .

[25]  Raj Mittra,et al.  FDTD signal extrapolation using the forward-backward autoregressive (AR) model , 1994, IEEE Microwave and Guided Wave Letters.